精英家教网 > 高中数学 > 题目详情
17.设双曲线的虚轴长为2,焦距为$2\sqrt{3}$,则双曲线的渐近线方程为(  )
A.$y=±\sqrt{2}x$B.y=±2xC.$y=±\frac{{\sqrt{2}}}{2}x$或y=$±\sqrt{2}x$D.$y=±\frac{1}{2}x$

分析 利用双曲线的虚轴长以及焦距求出a,然后求解双曲线的渐近线方程.

解答 解:双曲线的虚轴长为2,焦距为$2\sqrt{3}$,
可得b=1,c=$\sqrt{3}$,则a=$\sqrt{2}$,
双曲线方程为:$\frac{{x}^{2}}{2}-{y}^{2}=1$或$\frac{{y}^{2}}{2}-\frac{{x}^{2}}{1}=1$,
可得双曲线的渐近线方程为:y=$±\frac{\sqrt{2}}{2}x$或y=$±\sqrt{2}x$.
故选:C.

点评 本题考查双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R与年产量x(0≤x≤390)的关系是$R(x)=-\frac{x^3}{9000}+400x,0≤x≤390$,则当总利润最大时,每年生产的产品单位数是(  )
A.300B.250C.200D.100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.角α的终边上有一点P(4,-3),求cosα(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$±\frac{4}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$16\sqrt{3}$B.$24\sqrt{3}$C.$\frac{{80\sqrt{3}}}{3}$D.$26\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=2x+2-x-4,则f(2)的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设正项数列{an}的前n项和为Sn,且满足${S_n}=\frac{1}{2}a_n^2+\frac{n}{2}(n∈{N^*})$.
(1)计算a1,a2,a3的值,并猜想{an}的通项公式;
(2)用数学归纳法证明{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$3\overrightarrow a+4\overrightarrow b+5\overrightarrow c=0$,且$|\overrightarrow a|=|\overrightarrow b|=|\overrightarrow c|=1$,则$\overrightarrow b•(\overrightarrow a+\overrightarrow c)$等于(  )
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.0D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个几何体的三视图如图所示,则这个几何体的体积为(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{2}}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知平面向量$\overrightarrow a$与$\overrightarrow b$的夹角等于$\frac{π}{3}$,若|$\overrightarrow a$|=2,|$\overrightarrow b$|=3,则|2$\overrightarrow a$-3$\overrightarrow b$|=(  )
A.$\sqrt{57}$B.$\sqrt{61}$C.57D.61

查看答案和解析>>

同步练习册答案