精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=2x+2-x-4,则f(2)的值为$\frac{1}{4}$.

分析 利用已知条件得到f(2)=22+2-2-4,由此能求出结果.

解答 解:∵函数f(x)=2x+2-x-4,
∴f(2)=22+2-2-4=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)=Asin(ωx+φ)(ω>0,0<φ<π)的一段图象如图所示,则f(x)的解析式为(  )
A.$y=2sin(4x+\frac{2π}{3})$B.$y=4sin(2x+\frac{π}{3})$C.$y=2\sqrt{3}sin(4x+\frac{π}{6})$D.$y=-2sin(4x+\frac{2π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,已知三个内角为A,B,C所对的边分别为a,b,c,若a=7,b=8,c=5,则$\overrightarrow{AB}•\overrightarrow{BC}$=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:“1,b,4”成等比数列”,命题q:“b=2”,那么p成立是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x+1},x≤0}\\{1-lo{g}_{2}x,x>0}\end{array}\right.$则f(f(4))=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设双曲线的虚轴长为2,焦距为$2\sqrt{3}$,则双曲线的渐近线方程为(  )
A.$y=±\sqrt{2}x$B.y=±2xC.$y=±\frac{{\sqrt{2}}}{2}x$或y=$±\sqrt{2}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是用函数拟合解决实际问题的流程图,则矩形框中依次应填入(  )
A.整理数据、求函数关系式B.画散点图、进行模型修改
C.画散点图、求函数关系式D.整理数据、进行模型修改

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若点A(2,2)在矩阵M=$[\begin{array}{l}{cosα}&{-sinα}\\{sinα}&{cosα}\end{array}]$对应变换的作用下得到的点为$B(-1-\sqrt{3},-1+\sqrt{3})$,求矩阵M的逆矩阵.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow{a}$=(x,y)(x,y∈R),$\overrightarrow{b}$=(1,2),若x2+y2=1,则|$\overrightarrow{a}$-$\overrightarrow{b}$|的最小值为$\sqrt{5}$-1.

查看答案和解析>>

同步练习册答案