精英家教网 > 高中数学 > 题目详情
1.若点A(2,2)在矩阵M=$[\begin{array}{l}{cosα}&{-sinα}\\{sinα}&{cosα}\end{array}]$对应变换的作用下得到的点为$B(-1-\sqrt{3},-1+\sqrt{3})$,求矩阵M的逆矩阵.

分析 根据二阶矩阵与平面列向量的乘法,确定矩阵M,再求矩阵的逆矩阵.

解答 解:由题意知,$M[\begin{array}{l}2\\ 2\end{array}]=[\begin{array}{l}-1-\sqrt{3}\\-1+\sqrt{3}\end{array}]$,即$[\begin{array}{l}2cosα-2sinα\\ 2sinα+2cosα\end{array}]=[\begin{array}{l}-1-\sqrt{3}\\-1+\sqrt{3}\end{array}]$----------------------(2分)
所以$\left\{\begin{array}{l}2cosα-2sinα=-1-\sqrt{3}\\ 2sinα+2cosα=-1+\sqrt{3}\end{array}\right.$解得$\left\{\begin{array}{l}cosα=-\frac{1}{2}\\ sinα=\frac{{\sqrt{3}}}{2}\end{array}\right.$从而$M=[\begin{array}{l}-\frac{1}{2}-\frac{{\sqrt{3}}}{2}\\ \frac{{\sqrt{3}}}{2}-\frac{1}{2}\end{array}]$-----------(6分)
由${M^{-1}}M=[\begin{array}{l}1\;\;\;\;\;0\\ 0\;1\end{array}]$,解得${M^{-1}}=[{\begin{array}{l}{-\frac{1}{2}}&{\frac{{\sqrt{3}}}{2}}\\{-\frac{{\sqrt{3}}}{2}}&{-\frac{1}{2}}\end{array}}]$.----------------------------------------(10分)

点评 本题考查矩阵的求法,考查矩阵的逆矩阵,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=2x+2-x-4,则f(2)的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$3\overrightarrow a+4\overrightarrow b+5\overrightarrow c=0$,且$|\overrightarrow a|=|\overrightarrow b|=|\overrightarrow c|=1$,则$\overrightarrow b•(\overrightarrow a+\overrightarrow c)$等于(  )
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.0D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,网格纸的小方格是边长为1的正方形,则该几何体中最长的棱长是(  )
A.$\sqrt{5}$B.$\sqrt{6}$C.$\sqrt{7}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个几何体的三视图如图所示,则这个几何体的体积为(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{2}}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)是R上的增函数,
(Ⅰ)若a,b∈R,且a+b≥0,求证f(a)+f(b)≥f(-a)+f(-b)
(Ⅱ)写出(1)中命题的逆命题,判断其真假并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足a1=-2,an+1=2an+4.
(1)证明数列{an+4}是等比数列并求出{an}通项公式;
(2)若${b_n}={log_{\frac{1}{2}}}{({a_{n+1}}+4)^{{a_n}+4}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.椭圆的对称轴为坐标轴,若长、短轴之和为18,焦距为6,那么椭圆的方程为(  )
A.$\frac{x^2}{9}+\frac{y^2}{16}=1$B.$\frac{x^2}{25}+\frac{y^2}{16}=1$
C.$\frac{x^2}{25}+\frac{y^2}{16}=1$或$\frac{x^2}{16}+\frac{y^2}{25}=1$D.$\frac{x^2}{16}+\frac{y^2}{25}=1$

查看答案和解析>>

同步练习册答案