精英家教网 > 高中数学 > 题目详情
2.设正项数列{an}的前n项和为Sn,且满足${S_n}=\frac{1}{2}a_n^2+\frac{n}{2}(n∈{N^*})$.
(1)计算a1,a2,a3的值,并猜想{an}的通项公式;
(2)用数学归纳法证明{an}的通项公式.

分析 (1)利用递推关系式求解数列a1,a2,a3的值,猜想{an}的通项公式;
(2)利用数学归纳法的证明步骤,逐步证明即可.

解答 解:(1)当n=1时,${a_1}={S_1}=\frac{1}{2}a_1^2+\frac{1}{2}$,
得a1=1;${a_1}+{a_2}={S_2}=\frac{1}{2}a_2^2+1$,得a2=2,
${a_1}+{a_2}+{a_3}={S_3}=\frac{1}{2}a_3^2+\frac{3}{2}$,得a3=3,
猜想an=n.
(2)证明:(ⅰ)当n=1时,显然成立,
(ⅱ)假设当n=k时,ak=k,
则当n=k+1时,${a_{k+1}}={S_{k+1}}-{S_k}=\frac{1}{2}a_{k+1}^2+\frac{k+1}{2}-(\frac{1}{2}a_k^2+\frac{k}{2})$=$\frac{1}{2}a_{k+1}^2+\frac{k+1}{2}-(\frac{1}{2}{k^2}+\frac{k}{2})$,
整理得:$a_{k+1}^2-2{a_{k+1}}-{k^2}+1=0$,即[ak+1-(k+1)][ak+1+(k-1)]=0,
结合an>0,解得ak+1=k+1,
于是对于一切的自然数n∈N*,都有an=n.

点评 本题考查数列递推关系式的应用,数学归纳法的应用,考查逻辑推理能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知a1=2,an≠0,且an+1-an=2an+1an,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$tanα=\frac{1}{7}$,$tanβ=\frac{1}{3}$,求tan(α+β);tan(α+2β)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a=log35,b=log95,则有(  )
A.a>b>0B.0<a<bC.a<b<0D.0>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设双曲线的虚轴长为2,焦距为$2\sqrt{3}$,则双曲线的渐近线方程为(  )
A.$y=±\sqrt{2}x$B.y=±2xC.$y=±\frac{{\sqrt{2}}}{2}x$或y=$±\sqrt{2}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\overrightarrow a,\overrightarrow b$均为单位向量,并且它们的夹角为120°,那么$|{\overrightarrow a-2\overrightarrow b}|$等于(  )
A.$\sqrt{3}$B.$\sqrt{7}$C.3D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.运行如图所示的程序框图,若输入的实数为2,则输出的n为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)的导函数为f′(x),满足xf′(x)+2f(x)=$\frac{lnx}{x}$,且f(e)=$\frac{1}{2e}$
(Ⅰ)求f(x)的表达式
(Ⅱ)求函数f(x)在[1,e2]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是(  )
A.3cm3B.5cm3C.4cm3D.6cm3

查看答案和解析>>

同步练习册答案