【题目】已知
是同一平面内的三个向量,下列命题中正确的是( )
A.![]()
B.若
且
,则![]()
C.两个非零向量
,
,若
,则
与
共线且反向
D.已知
,
,且
与
的夹角为锐角,则实数
的取值范围是![]()
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆C:
的离心率为
,右准线方程为
.
求椭圆C的标准方程;
已知斜率存在且不为0的直线l与椭圆C交于A,B两点,且点A在第三象限内
为椭圆C的上顶点,记直线MA,MB的斜率分别为
,
.
若直线l经过原点,且
,求点A的坐标;
若直线l过点
,试探究
是否为定值?若是,请求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆C与y轴相切于点T(0,2),与x轴的正半轴交于两点
(点
在点
的左侧),且
.
(1)求圆C的方程;(2)过点
任作一直线与圆O:
相交于
两点,连接
,求证:
定值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且
,
.
![]()
求证:(1)直线DE
平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,曲线
由上半椭圆
:
(
,
)和部分抛物线
:
(
)连接而成,
与
的公共点为
,
,其中
的离心率为
.
![]()
(1)求
,
的值;
(2)过点
的直线
与
,
分别交于点
,
(均异于点
,
),是否存在直线
,使得以
为直径的圆恰好过
点,若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),将曲线
上各点的横坐标都缩短为原来的
倍,纵坐标坐标都伸长为原来的
倍,得到曲线
,在极坐标系(与直角坐标系
取相同的单位长度,且以原点
为极点,以
轴非负半轴为极轴)中,直线
的极坐标方程为
.
(1)求直线
和曲线
的直角坐标方程;
(2)设点
是曲线
上的一个动点,求它到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
为偶函数,且函数
的图象的两相邻对称轴间的距离为
.
(1)求
的值;
(2)将函数
的图象向右平移
个单位长度后,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数
的图象,求函数
的单调递减区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com