精英家教网 > 高中数学 > 题目详情
18.设△ABC的内角A,B,C所对的边分别为a,b,c,且c=$\sqrt{3}$,A=75°,B=45°,则b边长为(  )
A.$\frac{1}{4}$B.1C.2D.$\sqrt{2}$

分析 先求出C=180°-75°-45°=60°,再由正弦定理得b=$\frac{csinB}{sinC}$,由此能求出结果.

解答 解:∵△ABC的内角A,B,C所对的边分别为a,b,c,且c=$\sqrt{3}$,A=75°,B=45°,
∴C=180°-75°-45°=60°,
∴$\frac{c}{sinC}=\frac{b}{sinB}$,
∴b=$\frac{csinB}{sinC}$=$\frac{\sqrt{3}×sin45°}{sin60°}$=$\sqrt{2}$.
故选:D.

点评 本题考查三角形的边长的求法,考查三角形内角和定理、正弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知f(x)=x3+$\frac{1}{2}{x^2}$-ax.
(Ⅰ)当a=4时,求f(x)的极值;
(Ⅱ)若f(x)在(1,3)上不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知圆内接四边形ABCD,延长CD、BA交于E,且CD=AE,CE=12,EB=24,DA⊥EB,则AC=4$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.三椎体P-ABC中,PA=PB=$\sqrt{3}$,PC=2,且PA,PB,PC两两垂直,则此三棱锥外接球表面积是10π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.三棱锥S-ABC中,侧棱SA⊥底面ABC,AB=5,BC=8,∠B=60°,$SA=2\sqrt{5}$,则该三棱锥的外接球的表面积为(  )
A.$\frac{64}{3}π$B.$\frac{256}{3}π$C.$\frac{436}{3}π$D.$\frac{2048}{27}\sqrt{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.现采取随机模拟的方法估计某运动员射击击中目标的概率.先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示集中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的随机数:
7527  0293   7140   9857   0347   4373   8636   6947   1417   4698
0371  6233 2616   8045   6011   3661   9597   7424   7610   4281
根据以上数据估计该运动员射击四次至少击中三次的概率为(  )
A.0.3B.0.4C.05D.0.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个正三棱柱顶点都在球面上,正三棱柱的底面是正三角形,正三角形的边长是3,正三棱柱的体积是$\frac{{9\sqrt{3}}}{2}$,则球的体积是$\frac{32π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(4,-2),若$\overrightarrow{a}$$⊥\overrightarrow{b}$,则m=(  )
A.-2B.-$\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图的程序框图,输出的结果为(  )
A.57B.42C.26D.11

查看答案和解析>>

同步练习册答案