精英家教网 > 高中数学 > 题目详情
4.已知等差数列{an}中,a2=2,a12=-2,则{an}的前10项和为6.

分析 利用等差数列通项公式列出方程组,求出首项和公差,由此能求出{an}的前10项和.

解答 解:∵等差数列{an}中,a2=2,a12=-2,
∴$\left\{\begin{array}{l}{{a}_{1}+d=2}\\{{a}_{1}+11d=-2}\end{array}\right.$,
解得a1=2.4,d=-0.4,
∴{an}的前10项和为:
${S}_{10}=10×2.4+\frac{10×9}{2}×(-0.4)$=6.
故答案为:6.

点评 本题考查等差数列的前10项和的求法,考查等差数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在极坐标系中,圆ρ=sinθ的圆心的极坐标是(  )
A.$(\;1,\;\;\frac{π}{2})$B.(1,0)C.$(\;\frac{1}{2},\;\;\frac{π}{2}\;)$D.$(\;\frac{1}{2},\;\;0)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.底面是正方形的四棱锥中P-ABCD中,侧面PAD⊥底面ABCD,且△PAD是等腰直角三角形,其中PA=PD,E,F分别为线段PC,DB的中点,问在线段AB上是否存在点G,使得二面角C-PD-G的余弦值为$\frac{{\sqrt{3}}}{3}$,若存在,请求出点G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线y=4x与曲线y=x2围成的封闭区域面积为$\frac{32}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数z=$\frac{3-i}{i}$的共轭复数为$\overline{z}$,则$\overline{z}$在复平面内的对应点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=a(x-$\frac{1}{x}$)-2lnx(a∈R).
(1)当a=2时,求曲线f(x)在x=2处的切线方程;
(2)若a>$\frac{2e}{{e}^{2}+1}$,且m、n分别为f(x)的极大值和极小值,S=m-n,求证:S<$\frac{8}{{e}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C所对的边分别为a,b,c,且B=60°,c=4.
(Ⅰ)若b=6,求角C的正弦值及△ABC的面积;
(Ⅱ)若D,E在线段BC上,且BD=DE=EC,$AE=2\sqrt{3}BD$,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设D为△ABC的所在平面内一点,$\overrightarrow{BC}=-4\overrightarrow{CD}$,则$\overrightarrow{AD}$=(  )
A.$\frac{1}{4}\overrightarrow{AB}-\frac{3}{4}\overrightarrow{AC}$B.$\frac{1}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AC}$C.$\frac{3}{4}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC}$D.$\frac{3}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C的极坐标方程为ρ=2,在以极点为直角坐标原点O,极轴为x轴的正半轴建立的平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=3\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)在平面直角坐标系中,设曲线C经过伸缩变换φ:$\left\{\begin{array}{l}{{x}^{′}=\frac{1}{2}x}\\{{y}^{′}=y}\end{array}\right.$得到曲线C′,若M(x,y)为曲线C′上任意一点,求点M到直线l的最小距离.

查看答案和解析>>

同步练习册答案