精英家教网 > 高中数学 > 题目详情
10.若双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为x-2y=0,则它的离心率e=$\sqrt{5}$.

分析 求得双曲线的渐近线方程,由条件可得b=2a,由a,b,c的关系和离心率公式计算即可得到所求值.

解答 解:双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为:
y=±$\frac{a}{b}$x,
由一条渐近线方程为x-2y=0,可得$\frac{a}{b}$=$\frac{1}{2}$,即b=2a,
即有c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$a,
可得e=$\frac{c}{a}$=$\sqrt{5}$.
故答案为:$\sqrt{5}$.

点评 本题考查双曲线的离心率的求法,注意运用渐近线方程和基本量的关系,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.直角三角形ABC,三内角成等差数列,最短边的边长为m(m>0),P是△ABC内一点,并且∠APB=∠APC=∠BPC=120°,则PA+PB+PC=$\sqrt{21}$时,m的值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知F1,F2为双曲线C:x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左、右焦点,点M是双曲线C左支上的一点,直线MF2垂直双曲线的一条渐近线于点N,且N为线段MF2的中点,则b=(  )
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}的前n项和Sn=$\frac{4}{3}$an-$\frac{1}{3}$×2n+1+$\frac{2}{3}$,n=1,2,3,…
(1)求证:{an+2n}是等比数列;
(2)设Tn=$\frac{{2}^{n}}{{S}_{n}}$,n=1,2,3…证明:$\sum_{i=1}^{n}$Ti<$\frac{3}{2}$(其中$\sum_{i=1}^{n}$Ti=T1+T2+…+Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若$\left\{\begin{array}{l}{{A}_{x}^{y}=272}\\{{C}_{x}^{y}=136}\end{array}\right.$,则x=17,y=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四边形ABCD中,△ACB与∠D互补,cos∠ACB=$\frac{1}{3}$,AC=BC=2$\sqrt{3}$,AB=4AD.
(1)求AB的长;
(2)求sin∠ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若sin(3π+θ)=cos(π+θ),则2sin2θ+3sinθcosθ-2cos2θ=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知角θ终边过(1,2),则sin2θ-tan2θ=(  )
A.$\frac{1}{2}$B.0C.$\frac{32}{15}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线,向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,若函数g(x)=(x$\overrightarrow{a}$+$\overrightarrow{b}$)•(x$\overrightarrow{b}$)(x∈R)有最小值,则(  )
A.$\overrightarrow{a}⊥\overrightarrow{b}$B.|$\overrightarrow{a}$|>|$\overrightarrow{b}$|C.θ∈(0,$\frac{π}{2}$)D.$θ∈(\frac{π}{2},π)$

查看答案和解析>>

同步练习册答案