精英家教网 > 高中数学 > 题目详情
5.若$\left\{\begin{array}{l}{{A}_{x}^{y}=272}\\{{C}_{x}^{y}=136}\end{array}\right.$,则x=17,y=2.

分析 利用${A}_{x}^{y}$=${C}_{x}^{y}$•${A}_{y}^{y}$,可得y!=2,y=2.利用${A}_{x}^{2}$=x(x-1)=272,即可得出x.

解答 解:∵${A}_{x}^{y}$=${C}_{x}^{y}$•${A}_{y}^{y}$,
∴y!=$\frac{272}{136}$=2,解得y=2.
∴${A}_{x}^{2}$=x(x-1)=272,
解得x=17.
故答案分别为;17;2.

点评 本题考查了排列与组合数的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设x,y满足约束条件$\left\{\begin{array}{l}{1≤x≤2}\\{-1≤x-y≤0}\end{array}\right.$,则z=x-2y的最大值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知${C}_{n}^{2}$=45,则n=10,若${C}_{n}^{3}$=${C}_{n}^{8}$,则n=11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\sqrt{3}$cosx+sinx,且x∈[0,π],则f(x)的最小值是-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线l1:3x-4y+2=0与直线l2:4x+3y-1=0的位置关系是(  )
A.垂直B.平行C.相交但不垂直D.重合

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为x-2y=0,则它的离心率e=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若数列{an}的前n项和Sn=n2+2n+1.求(1)a8=?(2)求a6+a7+…+a10=?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{2+lo{g}_{\frac{1}{4}}x,x>1}\\{2+{4}^{x},x≤1}\end{array}\right.$则f(f($\frac{1}{2}$))=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求:lg$\sqrt{5}$+lg$\sqrt{2}$-($\frac{1}{2}$)0+$\sqrt{7-4\sqrt{3}}$的值.

查看答案和解析>>

同步练习册答案