精英家教网 > 高中数学 > 题目详情
如图,直三棱柱ABC-A1B1C1中,D、E分别是AB,BB1的中点.
(1)证明:BC1∥平面A1CD;
(2)设AA1=AC=CB=1,AB=
2
,求三棱锥D一A1CE的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定
专题:综合题,空间位置关系与距离
分析:(1)连结AC1交A1C于点F,则F为AC1中点,可得BC1∥DF,利用线面平行的判定定理,即可证明BC1∥平面A1CD;
(2)证明CD⊥平面ABB1A1,DE⊥A1D,转换底面,即可求三棱锥D一A1CE的体积.
解答: (1)证明:连结AC1交A1C于点F,则F为AC1中点.
又D是AB中点,连结DF,则BC1∥DF
∵DF?平面A1CD,BC1?平面A1CD
∴BC1∥平面A1CD

(2)解:∵ABC-A1B1C1是直三棱柱∴AA1⊥CD
∵AC=CB,D为AB中点,
∴CD⊥AB,
∵AA1∩AB=A,
∴CD⊥平面ABB1A1
∴AA1=AC=CB=1,AB=
2

∴∠ACB=90°,CD=
2
2
,A1D=
6
2
,DE=
3
2
,A1E=
3
2

∴A1D2+DE2=A1E2,∴DE⊥A1D,
VD-A1CE=VC-A1DE=
1
3
×(
1
2
×
6
2
×
3
2
2
2
=
1
8
点评:本题主要考查直线和平面平行的判定定理的应用,求三棱锥的体积,体现了数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知F1,F2分别是椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,椭圆G与抛物线y2=-8x有一个公共的焦点,且过点(-2,
2
).
(1)求椭圆G的方程;
(2)设直线l与椭圆G相交于A、B两点,若
OA
OB
(O为坐标原点),试探讨直线l与图形|x|+|y|≤
2
6
3
的公共点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-3,2),
b
=(2,1),
c
=(3,1),t∈R
(1)求|
a
-t
b
|的最小值及相应的t的值;
(2)若
a
+t
b
c
共线,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直三棱柱ABC-A′B′C′中,底面是以角∠ABC为直角的等腰直角三角形,AC=2a,BB′=3a,D是A′C′的中点.
(1)证明:A′B∥平面B′CD;
(2)在侧棱AA′上是否存在点E,使CE⊥平面B′D E.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
1
3

(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)求这名学生在上学路上恰好两个路口遇到遇到红灯的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,SA⊥平面ABCD,底ABCD为正方形,M、N分别为SB、SD的中点.求证:
(1)BD∥面AMN;
(2)CD⊥平面SAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD是边长为2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF,BE与平面ABCD所成角的正切值为
2
2

(1)求证:AC∥平面EFB
(2)求三棱锥C-BEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个组合体的三视图(单位:cm),
(1)此组合体是由上下两个几何体组成,试说出上下两个几何体的名称,并用斜二测画法画出下半部分几何体的直观图;
(2)求这个组合体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若|
a
|=|
b
|=|
a
+
b
|=1,则向量
a
b
的夹角等于
 

查看答案和解析>>

同步练习册答案