精英家教网 > 高中数学 > 题目详情
15.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,…,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个;则(  )
A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是$\frac{1}{5}$
B.①②两种抽样方法,这100个零件中每个被抽到的概率都是$\frac{1}{5}$,③并非如此
C.①③两种抽样方法,这100个零件中每个被抽到的概率都是$\frac{1}{5}$,②并非如此
D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同

分析 根据抽样的原理知道,不管采用哪一种抽样,在抽样过程中每个个体被抽到的概率是相等的,被抽到的概率不随着抽样方法变化.

解答 解:有抽样的原理知道,不管采用哪一种抽样,
在抽样过程中每个个体被抽到的概率是相等的,
被抽到的概率不随着抽样方法变化,
将三种抽样法的有关计算公式计算所得的概率都是$\frac{1}{5}$,
故选A.

点评 本题考查三种抽样方法和函数的值域,本题解题的关键是理解三种抽样方法在抽样过程中,每个个体被抽到的概率是相等的,这和选择的方法无关,只与样本容量和总体个数有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,若0<a<1,试求:f(a)+f(1-a)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a=1.10.9,b=0.91.1,c=log1.10.9,则a,b,c的大小关系是(  )
A.a<b<cB.c<b<aC.b<a<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.事件A,B,C相互独立,若P(A•B)=$\frac{1}{6}$,P($\overline{B}$•C)=$\frac{1}{8}$,P(A•B•$\overline{C}$)=$\frac{1}{8}$,则P(B)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知tanα=1,3sinβ=sin(2α+β),求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合A={x|x2-7x+10<0},集合B={x|$\frac{1}{2}$<2x<8},则A∪B=(  )
A.(-1,3)B.(-1,5)C.(2,5)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中正确的是(  )
A.两两相交的三条直线共面
B.两条相交直线上的三个点可以确定一个平面
C.梯形是平面图形
D.一条直线和一个点可以确定一个平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R)
(Ⅰ)证明:无论m取什么实数,l与圆恒交于两点;
(Ⅱ)求直线被圆C截得的弦长最小时l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由曲线y=$\frac{1}{x}$,y=x,x=2围成的平面区域的面积是$\frac{3}{2}$-ln2.

查看答案和解析>>

同步练习册答案