精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=sin($\frac{π}{3}$+4x)+cos(4x-$\frac{π}{6}$)
(1)求该函数的单调区间,最大、最小值;
(2)设g(x)=f(x+a),若g(x)的图象关于y轴对称,求实数a的最小正值.

分析 (1)利用诱导公式对原函数解析式化简,进而利用三角函数图象与性质求得函数的最大最小值,以及单调区间.
(2)先确定g(x)的解析式,进而利用三角函数的性质求得a的最小值.

解答 解(1)f(x)=sin($\frac{π}{3}$+4x)+cos(4x-$\frac{π}{6}$)=sin($\frac{π}{3}$+4x)+sin($\frac{π}{3}$+4x)=2sin(4x+$\frac{π}{3}$),
∴函数f(x)的最大值为2,最小值为-2,
由2kπ+$\frac{π}{2}$≤4x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,求得递减区间[$\frac{π}{24}$+$\frac{kπ}{2}$,$\frac{7π}{24}$+$\frac{kπ}{2}$](k∈Z),
由2kπ-$\frac{π}{2}$≤4x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,求得递增区间[-$\frac{5π}{24}$+$\frac{kπ}{2}$,$\frac{π}{24}$+$\frac{kπ}{2}$](k∈Z).
(2)g(x)=2sin[4(x+a)+$\frac{π}{3}$],
图象关于y轴对称,得到g(x)=2cos4x,
则4a+$\frac{π}{3}$=$\frac{π}{2}$+2kπ,
∴a=$\frac{kπ}{2}$+$\frac{π}{24}$,k∈Z.
∴a最小正值$\frac{π}{24}$.

点评 本题主要考查了三角函数图象与性质,诱导公式的应用.注意在解题过程中与函数的图象相结合.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)是奇函数(x∈R),则(  )
A.f(x)•sinx是奇函数B.f(x)+cosx是偶函数
C.f(x2)•sinx是奇函数D.f(x2)+sinx是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知D=$\left\{\begin{array}{l}{2x-y+k≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$,?m(x,y)∈D恒有2x-5y+10k+15>0,?N(x0,y0)∈D使得-7x0+2y0-5k2+2>0,则k∈$\frac{1}{5}$<k<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.两条平行的直线分别经过点A(3,0),B(0,4),它们之间的距离d满足的条件是(  )
A.0<d≤3B.0<d≤5C.0<d≤4D.3<d≤5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C的两个焦点分别为F1(-1,0),F2(1,0),短轴的两个端点分别为B1,B2,且∠B1F1B2=90°.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点F2的直线l与椭圆C相交于P、Q两点,且以线段PQ为直径的圆经过左焦点F1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某流程图如图所示,现输入如下四个函数,则可以输出f(x)的是(  )
A.f(x)=-x2+1B.f(x)=x+$\frac{1}{x}$C.f(x)=lg$\frac{1+x}{1-x}$D.f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知过x轴上一点E(x0,0)(0<x0<$\sqrt{2}$)的直线l与椭圆$\frac{{x}^{2}}{2}$+y2=1相交于M、N两点,若$\frac{1}{E{M}^{2}}$+$\frac{1}{E{N}^{2}}$为定值,则x0的值为(  )
A.1B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若关于x的方程x3-x2-x+a=0(a∈R)有三个实根x1,x2,x3,且满足x1<x2<x3,则a的取值范围为(  )
A.a>$\frac{5}{27}$B.-$\frac{5}{27}$<a<1C.a<-1D.a>-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=cos2x的单调增区间为$[kπ-\frac{π}{2},kπ]$(k∈Z).

查看答案和解析>>

同步练习册答案