精英家教网 > 高中数学 > 题目详情
1.已知过x轴上一点E(x0,0)(0<x0<$\sqrt{2}$)的直线l与椭圆$\frac{{x}^{2}}{2}$+y2=1相交于M、N两点,若$\frac{1}{E{M}^{2}}$+$\frac{1}{E{N}^{2}}$为定值,则x0的值为(  )
A.1B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

分析 设直线MN的参数方程,可得M,N的坐标,把直线MN的方程代入椭圆的方程,得到根与系数的关系,可得$\frac{1}{E{M}^{2}}$+$\frac{1}{E{N}^{2}}$=$\frac{2{{x}_{0}}^{2}+4+(4-6{{x}_{0}}^{2})si{n}^{2}α}{({{x}_{0}}^{2}-2)^{2}}$,由于$\frac{1}{E{M}^{2}}$+$\frac{1}{E{N}^{2}}$为定值,因此4-6x02=0,解出即可.

解答 解:设直线MN的方程为$\left\{\begin{array}{l}{x={x}_{0}+tcosα}\\{y=tsinα}\end{array}\right.$.
M(x0+t1cosα,t1sinα),N(x0+t2cosα,t2sinα)..
把直线MN的方程代入椭圆的方程$\frac{{x}^{2}}{2}$+y2=1,
化为(1+sin2α)t2+2x0tcosα+x02-2=0.
∴t1+t2=$\frac{2{x}_{0}cosα}{1+si{n}^{2}α}$,t1t2=$\frac{{{x}_{0}}^{2}-2}{1+si{n}^{2}α}$.
∴t12+t22=$\frac{2{{x}_{0}}^{2}+4+(4-6{x}_{0})si{n}^{2}α}{(1+si{n}^{2}α)^{2}}$
∴$\frac{1}{E{M}^{2}}$+$\frac{1}{E{N}^{2}}$=$\frac{2{{x}_{0}}^{2}+4+(4-6{{x}_{0}}^{2})si{n}^{2}α}{({{x}_{0}}^{2}-2)^{2}}$.
∵$\frac{1}{E{M}^{2}}$+$\frac{1}{E{N}^{2}}$为定值,
∴4-6x02=0,又x0>0.
解得x0=$\frac{\sqrt{6}}{3}$.
故选:B.

点评 本题考查了直线与椭圆相交定值问题转化为方程联立得到根与系数的关系、直线的参数方程及其参数的意义,考查了推理能力和计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,a1=0,Sn+n=an+1,n∈N*
(Ⅰ) 求证:数列{an+1}是等比数列;
(Ⅱ)若不等式$\frac{1}{{{a_1}+1}}+\frac{2}{{{a_2}+1}}+…+\frac{n}{{{a_n}+1}}≥m-\frac{9}{{2+2{a_n}}}$对于n∈N*恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,由圆x2+y2=9上一点M向x轴引垂线,垂足为N,设P为线段MN的中点,当点M变动时,选择适当的参数,求点P的轨迹的参数方程,并说明它表示什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin($\frac{π}{3}$+4x)+cos(4x-$\frac{π}{6}$)
(1)求该函数的单调区间,最大、最小值;
(2)设g(x)=f(x+a),若g(x)的图象关于y轴对称,求实数a的最小正值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设x∈R,M表示不超过x的最大整数.给出下列结论:
①[3x]=3[x]
②若m,n∈R,则[m-n]≤[m]-[n];
③函数f(x)=x-[x]-定是周期函数:
④若方程[x]=ax有且仅有3个解,则a∈($\frac{3}{4}$,$\frac{4}{5}$]∪[$\frac{4}{3}$,$\frac{3}{2}$).
其中正确的结论有②③.(请填上你认为所有正确的结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=cos2(x+$\frac{π}{4}$),a=f(lg8),b=f(lg$\frac{1}{8}$),则(  )
A.a+b=0B.a-b=0C.a+b=1D.a-b=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数列{an}共有12项,其中a1=0,a5=-2,a12=3,且|ak+1-ak|=1(k=1,2,3,…11),则满足这种条件的不同数列的个数为28.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知a、b为实数,则“a>b>1”是“$\frac{1}{a-1}$<$\frac{1}{b-1}$”的充分不必要条件(填“充分不必要”、“必要不充分”及“充要”等).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在圆锥PO中,已知高PO=2,底面圆的半径为1;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,其中点M为所在母线的中点,O为底面圆的圆心,对于下面四个命题,正确的个数有(  )

①圆的面积为$\frac{π}{4}$;
②椭圆的长轴长为$\sqrt{13}$;
③双曲线两渐近线的夹角为arcsin$\frac{4}{5}$;
④抛物线上的点$(\frac{\sqrt{5}}{2},1)$,其焦点到准线的距离为$\frac{{\sqrt{5}}}{5}$.
A.1 个B.2 个C.3个D.4个

查看答案和解析>>

同步练习册答案