精英家教网 > 高中数学 > 题目详情
3.已知数列{an}的前n项和为Sn,a1=0,Sn+n=an+1,n∈N*
(Ⅰ) 求证:数列{an+1}是等比数列;
(Ⅱ)若不等式$\frac{1}{{{a_1}+1}}+\frac{2}{{{a_2}+1}}+…+\frac{n}{{{a_n}+1}}≥m-\frac{9}{{2+2{a_n}}}$对于n∈N*恒成立,求实数m的最大值.

分析 (Ⅰ)由数列递推式得n≥2时的另一递推式,作差后可得an+1+1=2(an+1)(n≥2),把n=1代入已知的等式,由a1=0,得到第2项为1,有$\frac{{a}_{2}}{{a}_{1}}=2$,由此可得数列{an+1}是等比数列;
(Ⅱ)由数列{an+1}是等比数列,得an+1=2n-1,令$T=\frac{1}{{a}_{1}+1}+\frac{2}{{a}_{2}+1}+…+\frac{n}{{a}_{n}+1}$=$\frac{1}{{2}^{0}}+\frac{2}{{2}^{1}}+\frac{3}{{2}^{2}}+…+\frac{n}{{2}^{n-1}}$,由错位相减法求得$T=4-\frac{1}{{2}^{n-2}}-\frac{n}{{2}^{n-1}}$.代入不等式$\frac{1}{{{a_1}+1}}+\frac{2}{{{a_2}+1}}+…+\frac{n}{{{a_n}+1}}≥m-\frac{9}{{2+2{a_n}}}$,分离m后另一数列的函数特性求得m的最大值.

解答 (Ⅰ)证明:由Sn+n=an+1,n∈N*,得Sn-1+(n-1)=an(n≥2),
 两式作差得:an+1=an+1-an,即an+1=2an+1,
∴an+1+1=2(an+1)(n≥2),
又a1=0,∴a2=1,$\frac{{a}_{2}+1}{{a}_{1}+1}=\frac{2}{1}=2$,
∴数列{an+1}是首项为1,公比为2的等比数列;
(Ⅱ)解:由数列{an+1}是等比数列,得an+1=2n-1
则${a}_{n}={2}^{n-1}-1$.
令$T=\frac{1}{{a}_{1}+1}+\frac{2}{{a}_{2}+1}+…+\frac{n}{{a}_{n}+1}$=$\frac{1}{{2}^{0}}+\frac{2}{{2}^{1}}+\frac{3}{{2}^{2}}+…+\frac{n}{{2}^{n-1}}$,
则$\frac{1}{2}T=\frac{1}{{2}^{1}}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}+…+\frac{n}{{2}^{n}}$,
∴$\frac{1}{2}T=1+\frac{1}{2}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n-1}}-\frac{n}{{2}^{n}}$=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}-\frac{n}{{2}^{n}}=2-\frac{1}{{2}^{n-1}}-\frac{n}{{2}^{n}}$.
∴$T=4-\frac{1}{{2}^{n-2}}-\frac{n}{{2}^{n-1}}$.
由不等式$\frac{1}{{{a_1}+1}}+\frac{2}{{{a_2}+1}}+…+\frac{n}{{{a_n}+1}}≥m-\frac{9}{{2+2{a_n}}}$对于n∈N*恒成立,
得$4-\frac{1}{{2}^{n-2}}-\frac{n}{{2}^{n-1}}≥m-\frac{9}{2+{2}^{n}-2}=m-\frac{9}{{2}^{n}}$,
即$m≤4-\frac{4}{{2}^{n}}-\frac{2n}{{2}^{n}}+\frac{9}{{2}^{n}}=4-\frac{2n-5}{{2}^{n}}$.
∴当n=1时,m$≤\frac{11}{2}$.
即实数m的最大值为:$\frac{11}{2}$.

点评 本题考查了数列递推式,考查了等比关系的确定,训练了错位相减法求数列的和,考查了数列的函数特性,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知点A、D分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点和上顶点,点P是线段AD上任意一点,F1、F2分别是椭圆的左、右焦点,且$\overline{P{F}_{1}}$•$\overline{P{F}_{2}}$的最大值是1,最小值是-$\frac{11}{5}$.
(1)求椭圆方程;
(2)设椭圆的右顶点为B,点S是椭圆位于x轴上方的一点,直线AS直线BS与直线l:x=$\frac{34}{15}$分别交于M、N两点,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知B(-2,0),C(2,0),A为动点,△ABC的周长为10,则动点A的满足的方程为(  )
A.$\frac{x^2}{6}+\frac{y^2}{5}$=1B.$\frac{x^2}{9}+\frac{y^2}{5}$=1C.$\frac{x^2}{9}+\frac{y^2}{4}$=1D.$\frac{x^2}{8}+\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)是奇函数(x∈R),则(  )
A.f(x)•sinx是奇函数B.f(x)+cosx是偶函数
C.f(x2)•sinx是奇函数D.f(x2)+sinx是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=$\frac{{S}_{2}}{{b}_{2}}$.则q的值为3,bn=3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={-1,i},i为虚数单位,则下列选项正确的是(  )
A.$\frac{1}{i}$∈AB.$\frac{1-i}{1+i}$∈AC.i3∈AD.|-i|∈A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{ln(x+a)+b}{x}$(a、b∈R,a、b为常数),且y=f(x)在x=1处切线方程为y=x-1.
(1)求a,b的值;
(2)设h(x)=$\frac{xf(x)+1}{{e}^{2x}}$,k(x)=2h′(x)x2,求证:当x>0时,k(x)<$\frac{1}{e}$+$\frac{2}{{e}^{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知D=$\left\{\begin{array}{l}{2x-y+k≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$,?m(x,y)∈D恒有2x-5y+10k+15>0,?N(x0,y0)∈D使得-7x0+2y0-5k2+2>0,则k∈$\frac{1}{5}$<k<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知过x轴上一点E(x0,0)(0<x0<$\sqrt{2}$)的直线l与椭圆$\frac{{x}^{2}}{2}$+y2=1相交于M、N两点,若$\frac{1}{E{M}^{2}}$+$\frac{1}{E{N}^{2}}$为定值,则x0的值为(  )
A.1B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案