精英家教网 > 高中数学 > 题目详情
18.等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=$\frac{{S}_{2}}{{b}_{2}}$.则q的值为3,bn=3n-1

分析 分别利用等差数列的求和公式及等比数列的通项公式表示已知条件,然后解方程可求等比数列的公比q,等差数列的公差d,即可求解.

解答 解:设等差数列{an}的公差为d,
∵等差数列{an}前n项和为Sn,数列{bn}为正项的等比数列,
且b2+S2=12,q=$\frac{{S}_{2}}{{b}_{2}}$,
∴$\left\{\begin{array}{l}{1•q+{a}_{1}+{a}_{2}=12}\\{q=\frac{{a}_{1}+{a}_{2}}{1•q}}\end{array}\right.$,
即$\left\{\begin{array}{l}{q+6+d=12}\\{{q}^{2}=6+d}\end{array}\right.$,
解得$\left\{\begin{array}{l}{q=3}\\{d=3}\end{array}\right.$,(负值舍去),
∴bn=1•3n-1=3n-1
故答案为:3,3n-1

点评 本题考查等差数列与等比数列的通项公式和前n项和公式,考查方程思想与运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知x∈[-$\frac{π}{3}$,$\frac{2π}{3}$],求函数y=-3(1-cos2x)-4cosx+4的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)是定义在(0,+∞)上的单调函数,f′(x)是f(x)的导函数,若对?x∈(0,+∞),都有f[f(x)-2x]=3,则方程f′(x)-$\frac{4}{x}$=0的解所在的区间是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一直集合M={(x,y)|y=x2+1},N={(x,y)|y=x+1},则M∩N=(  )
A.(0,1),(1,2)B.{(0,1),(1,2)}C.{y|y=1或y=2}D.{y|y≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等腰直角三角形ABC的斜边长为5,以CB为半径的扇形的圆心角为$\frac{5π}{6}$,点P为扇形弧BD上任一点,则$\overrightarrow{PA}•\overrightarrow{PB}$的最大值为(  )
A.5+5$\sqrt{5}$B.5-$\sqrt{5}$C.5-$\frac{{5\sqrt{2}}}{2}$D.$\frac{25}{2}$(1+$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,a1=0,Sn+n=an+1,n∈N*
(Ⅰ) 求证:数列{an+1}是等比数列;
(Ⅱ)若不等式$\frac{1}{{{a_1}+1}}+\frac{2}{{{a_2}+1}}+…+\frac{n}{{{a_n}+1}}≥m-\frac{9}{{2+2{a_n}}}$对于n∈N*恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.(1+2x)6(1+y)4的展开式中xy2项的系数为(  )
A.45B.72C.60D.120

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知S是边长为a的等边三角形ABC所在平面外一点,SA=SB=SC,D为AB的中点,且SD与BC所成的角为45°,求SD与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设x∈R,M表示不超过x的最大整数.给出下列结论:
①[3x]=3[x]
②若m,n∈R,则[m-n]≤[m]-[n];
③函数f(x)=x-[x]-定是周期函数:
④若方程[x]=ax有且仅有3个解,则a∈($\frac{3}{4}$,$\frac{4}{5}$]∪[$\frac{4}{3}$,$\frac{3}{2}$).
其中正确的结论有②③.(请填上你认为所有正确的结论序号)

查看答案和解析>>

同步练习册答案