精英家教网 > 高中数学 > 题目详情
10.(1+2x)6(1+y)4的展开式中xy2项的系数为(  )
A.45B.72C.60D.120

分析 把所给的式子利用二项式定理展开,可得xy2项的系数.

解答 解:由于(1+2x)6(1+y)4=(1+12x+60x2+160x3+…+64x6)(1+4y+6y2+4y3+y4),
可得xy2项的系数为12×6=72,
故选:B.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知A,B是y=sin(ωx+φ)的图象与x轴的两个相邻交点,A,B之间的最值点为C.若△ABC为等腰直角三角形,则ω的值为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知正项数列{an}的前n项和为Sn
(1)若4Sn-an2-2an-1=0,求{an}的通项公式;
(2)若{an}是等比数列,公比为q(q≠1,q为正常数),数列{lgan}的前n项和为Tn,$\frac{{T}_{(k+1)n}}{{T}_{kn}}$为定值,
求a1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=$\frac{{S}_{2}}{{b}_{2}}$.则q的值为3,bn=3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x|x-a|-2.
(Ⅰ)当a=2时,求函数f(x)在[0,3]上的最大值和最小值;
(Ⅱ)若对任意x∈[0,1]恒有f(x)<0,求实数a的取值范围;
(Ⅲ)f(x)是否存在三个零点,若存在,求实数a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{ln(x+a)+b}{x}$(a、b∈R,a、b为常数),且y=f(x)在x=1处切线方程为y=x-1.
(1)求a,b的值;
(2)设h(x)=$\frac{xf(x)+1}{{e}^{2x}}$,k(x)=2h′(x)x2,求证:当x>0时,k(x)<$\frac{1}{e}$+$\frac{2}{{e}^{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知sin$\frac{α}{2}$-cos$\frac{α}{2}$=-$\frac{1}{\sqrt{5}}$,$\frac{π}{2}$<α<π,求sinα,tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设P(x,y)是曲线x2+y2+8y+12=0上任意一点,则$\sqrt{(x-1)^{2}+(y-1)^{2}}$的最大值为$\sqrt{26}+2$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知全集U=R,A={x|x<1},B={x|x≥2},则集合∁U(A∪B)=(  )
A.{x|1≤x<2}B.{x|1<x≤2}C.{x|x≥1}D.{x|x≤2}

查看答案和解析>>

同步练习册答案