精英家教网 > 高中数学 > 题目详情
8.已知全集U=R,A={x|x<1},B={x|x≥2},则集合∁U(A∪B)=(  )
A.{x|1≤x<2}B.{x|1<x≤2}C.{x|x≥1}D.{x|x≤2}

分析 求出A与B的并集,根据全集U=R,求出并集的补集即可.

解答 解:∵全集U=R,A={x|x<1},B={x|x≥2},
∴A∪B={x|x<1或x≥2},
则∁U(A∪B)={x|1≤x<2},
故选:A.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.(1+2x)6(1+y)4的展开式中xy2项的系数为(  )
A.45B.72C.60D.120

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.气球的体积V(单位:L)中冲入空气,气球中的空气从1L到2L时,气球半径r(单位:dm)的平均变化率约为0.16(dm/L).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设x∈R,M表示不超过x的最大整数.给出下列结论:
①[3x]=3[x]
②若m,n∈R,则[m-n]≤[m]-[n];
③函数f(x)=x-[x]-定是周期函数:
④若方程[x]=ax有且仅有3个解,则a∈($\frac{3}{4}$,$\frac{4}{5}$]∪[$\frac{4}{3}$,$\frac{3}{2}$).
其中正确的结论有②③.(请填上你认为所有正确的结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x∈R|ax2-3x+2=0}.
(1)A=∅,求实数a的取值范围;
(2)若A是单元素集,求a的值和集合A;
(3)求集合M={a∈R|A≠∅}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数列{an}共有12项,其中a1=0,a5=-2,a12=3,且|ak+1-ak|=1(k=1,2,3,…11),则满足这种条件的不同数列的个数为28.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{b^2}+\frac{y^2}{a^2}=1$(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,直线y=b与椭圆C相交于M、N两点,O为坐标原点,且△MON的面积为 $\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)若直线l (斜率存在且不为零)与y轴交于点P(0,m),与椭圆C交于相异两点A、B,$\overrightarrow{AP}$=$λ\overrightarrow{PB}$且$\overrightarrow{OA}$+$λ\overrightarrow{OB}$=4$\overrightarrow{OP}$,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=tanx(-$\frac{π}{4}$≤x≤$\frac{π}{4}$,且x≠0)的值域是[-1,0)∪(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在正三角形ABC中,E、F、P分别是-AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1).将△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2)

(1)求证:FP∥平面A1EB.
(2)求证:A1E⊥平面BEP;
(3)求直线A1E与平面A1BP所成角的大小.

查看答案和解析>>

同步练习册答案