精英家教网 > 高中数学 > 题目详情
11.气球的体积V(单位:L)中冲入空气,气球中的空气从1L到2L时,气球半径r(单位:dm)的平均变化率约为0.16(dm/L).

分析 根据球的体积公式,得到半径r表示体积V的函数r(V)=$\root{3}{\frac{3V}{4π}}$,再求出r(2)-r(1),问题得以解决.

解答 解:因为气球的体积V(单位:L)与气球半径r(单位:dm)的函数关系为V(r)=$\frac{4}{3}$πr3
则半径r表示体积V的函数r(V)=$\root{3}{\frac{3V}{4π}}$,
当气球中的空气从1L到2L时,r(2)-r(1)≈0.16,
则气球半径r(单位:dm)的平均变化率约为$\frac{r(2)-r(1)}{2-1}$=0.16(dm/L),
故答案为:0.16(dm/L).

点评 本题考查变化的快慢与变化率,关键是求出半径r表示体积V的函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知正项数列{an}的前n项和为Sn
(1)若4Sn-an2-2an-1=0,求{an}的通项公式;
(2)若{an}是等比数列,公比为q(q≠1,q为正常数),数列{lgan}的前n项和为Tn,$\frac{{T}_{(k+1)n}}{{T}_{kn}}$为定值,
求a1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知sin$\frac{α}{2}$-cos$\frac{α}{2}$=-$\frac{1}{\sqrt{5}}$,$\frac{π}{2}$<α<π,求sinα,tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设P(x,y)是曲线x2+y2+8y+12=0上任意一点,则$\sqrt{(x-1)^{2}+(y-1)^{2}}$的最大值为$\sqrt{26}+2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.10个篮球队中有2个强队,先任意将这10个对平均分成两组进行比赛,则2个强队不分在同一组的概率是$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C的两个焦点分别为F1(-1,0),F2(1,0),短轴的两个端点分别为B1,B2,且∠B1F1B2=90°.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点F2的直线l与椭圆C相交于P、Q两点,且以线段PQ为直径的圆经过左焦点F1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆心为C(-2,6)的圆经过点M(0,6-2$\sqrt{3}$)
(1)求圆C的标准方程;
(2)若直线l过点P(0,5)且被圆C截得的线段长为4$\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知全集U=R,A={x|x<1},B={x|x≥2},则集合∁U(A∪B)=(  )
A.{x|1≤x<2}B.{x|1<x≤2}C.{x|x≥1}D.{x|x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知递增的等比数列{an}前三项之积为8,且这三项分别加上1、2、2后又成等差数列.
(1)求等比数列{an}的通项公式;
(2)记bn=an+2n,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案