分析 由题意,可知f(x)-2X是定值,令t=f(x)-2X,得出f(x)=2X+t,再由f(t)=2t+t=3求出t的值,即可得出f(x)的表达式,求出函数的导数,即可求出f′(x)-$\frac{4}{x}$=0的解所在的区间,即得正确选项
解答 解:由题意,可知f(x)-2X是定值,令t=f(x)-2X,则f(x)=2X+t
又f(t)=2t+t=3,解得t=1
所以有f(x)=2X+1
所以f′(x)=2X•ln2,
令F(x)=f′(x)-$\frac{4}{x}$=2X•ln2-$\frac{4}{x}$
可得F(1)=21•ln2-4<0,F(2)=22•ln2-2>0,
即F(x)=2X•ln2-$\frac{4}{x}$零点在区间(1,2)内
所以f′(x)-$\frac{4}{x}$=0的解所在的区间是(1,2);
故答案为:(1,2).
点评 本题考查导数运算法则,函数的零点,解题的关键是判断出f(x)-2x是定值,本题考查了转化的思想,将方程的根转化为函数的零点来进行研究.
科目:高中数学 来源: 题型:选择题
| A. | {1,4,5} | B. | {1,4} | C. | {4} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{6}+\frac{y^2}{5}$=1 | B. | $\frac{x^2}{9}+\frac{y^2}{5}$=1 | C. | $\frac{x^2}{9}+\frac{y^2}{4}$=1 | D. | $\frac{x^2}{8}+\frac{y^2}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com