精英家教网 > 高中数学 > 题目详情
7.已知集合A={x|log2(x-1)<1},$B=\left\{{x|\frac{x+1}{x-3}<0}\right\}$,则“x∈A”是“x∈B”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 利用对数函数的单调性化简集合A,利用不等式的解法可得B,再利用简易逻辑的判定方法即可得出.

解答 解:由log2(x-1)<1,可得0<x-1<2,解得1<x<3.
∴A=(1,3).
由$\frac{x+1}{x-3}$<0,?(x+1)(x-3)<0,解得-1<x<3.∴B=(-1,3).
则“x∈A”是“x∈B”的充分不必要条件.
故选:A.

点评 本题考查了对数函数的单调性、不等式的性质与解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,圆锥的横截面为等边三角形SAB,O为底面圆圆心,Q为底面圆周上一点.
(Ⅰ)如果BQ的中点为C,OH⊥SC,求证:OH⊥平面SBQ;
(Ⅱ)如果∠AOQ=60°,QB=2$\sqrt{3}$,求该圆锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若等比数列{an}的公比为q,则关于x,y的二元一次方程组$\left\{\begin{array}{l}{a_1}x+{a_3}y=2\\{a_2}x+{a_4}y=1\end{array}\right.$的解的情况下列说法正确的是(  )
A.对任意q∈R(q≠0),方程组都有唯一解
B.对任意q∈R(q≠0),方程组都无解
C.当且仅当$q=\frac{1}{2}$时,方程组有无穷多解
D.当且仅当$q=\frac{1}{2}$时,方程组无解

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=ex(x+1),给出下列命题:
①当x>0时,f(x)=e-x(x-1);
②函数f(x)有两个零点;
③f(x)<0的解集为(-∞,-1)∪(0,1);
④?x1,x2∈R,都有|f(x1)-f(x2)|<2.
其中正确的命题为①③④ (把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx+$\frac{1}{2}$(ω>0),与f(x)图象的对称轴x=$\frac{π}{3}$相邻的f(x)的零点为x=$\frac{π}{12}$.
(Ⅰ)讨论函数f(x)在区间$[{-\frac{π}{12},\frac{5π}{12}}]$上的单调性;
(Ⅱ)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=$\sqrt{3}$,f(C)=1,若向量$\overrightarrow m$=(1,sinA)与向量$\overrightarrow n$=(2,sinB)共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数$f(x)=\left\{\begin{array}{l}{3^{x+1}},x≤0\\{log_{\frac{1}{2}}}x,x>0\end{array}\right.$则不等式f(x)>1的解集为$(-1,\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在三棱锥A-BCD中,∠ABC=∠BCD=∠CDA=90°,AC=6$\sqrt{3}$,BC=CD=6,E点在平面BCD内,EC=BD,EC⊥BD.    
(I)求证:AE⊥平面BCDE;
(Ⅱ)设点G在棱AC上,且CG=2GA,试求三棱锥G-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.3D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设变量x,y满足约束条件:$\left\{\begin{array}{l}x+y-3≥0\\ x-y+1≥0\\ 2x-y-3≤0\end{array}\right.$,则目标函数z=x+2y的最小值为4.

查看答案和解析>>

同步练习册答案