精英家教网 > 高中数学 > 题目详情
12.已知函数$f(x)=\left\{\begin{array}{l}{3^{x+1}},x≤0\\{log_{\frac{1}{2}}}x,x>0\end{array}\right.$则不等式f(x)>1的解集为$(-1,\frac{1}{2})$.

分析 根据题意,由f(x)>1,变形可得$\left\{\begin{array}{l}{{3}^{x+1}>1}\\{x≤0}\end{array}\right.$①或$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x>1}\\{x<0}\end{array}\right.$②,解①②再取并集可得x的取值范围,即可得答案.

解答 解:根据题意,函数的解析式为$f(x)=\left\{\begin{array}{l}{3^{x+1}},x≤0\\{log_{\frac{1}{2}}}x,x>0\end{array}\right.$,
若不等式f(x)>1,$\left\{\begin{array}{l}{{3}^{x+1}>1}\\{x≤0}\end{array}\right.$①或$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x>1}\\{x>0}\end{array}\right.$②,
解①可得:-1<x≤0,
解②可得:0<x<$\frac{1}{2}$,
综合可得:x的取值范围:-1<x<$\frac{1}{2}$,
即(x)>1的解集为(-1,$\frac{1}{2}$);
故答案为:(-1,$\frac{1}{2}$).

点评 本题考查分段函数的应用,涉及指数、对数不等式的解法,注意转化为两个不等式组进行分开求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知A={1,2,4},B={y|y=log2x,x∈A},则A∪B=(  )
A.{1,2}B.[1,2]C.{0,1,2,4}D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给出计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{2018}$的值的一个程序框图如图,其中判断框内应填入的条件是(  )
A.i>1009?B.i<1009?C.i>2018?D.i<2018?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数$f(x)=\frac{x}{{{e^{sin({x-\frac{π}{2}})}}}}$(e为自然对数的底数),当x∈[-π,π]时,y=f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|log2(x-1)<1},$B=\left\{{x|\frac{x+1}{x-3}<0}\right\}$,则“x∈A”是“x∈B”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则|BF|=10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在R上的函数f(x)满足f(x+4)=f(x),f(x)=$\left\{\begin{array}{l}-{x^2}+1,\;\;-1≤x≤1\\-|{x-2}|+1,\;1<x≤3\end{array}$.若关于x的方程f(x)-ax=0有5个不同实根,则正实数a的取值范围是(  )
A.$({\frac{1}{4},\frac{1}{3}})$B.$({\frac{1}{6},\frac{1}{4}})$C.$({16-6\sqrt{7},\frac{1}{6}})$D.$({\frac{1}{6},8-2\sqrt{15}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A、B为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右顶点,F1,F2为其左右焦点,双曲线的渐近线上一点P(x0,y0)(x0<0,y0>0),满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=0,且∠PBF1=45°,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{5}+1}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若二次函数f(x)=ax2+bx+c(a≤b)的值域为[0,+∞),则$\frac{b-a}{a+b+c}$的最大值是$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案