| A. | $({\frac{1}{4},\frac{1}{3}})$ | B. | $({\frac{1}{6},\frac{1}{4}})$ | C. | $({16-6\sqrt{7},\frac{1}{6}})$ | D. | $({\frac{1}{6},8-2\sqrt{15}})$ |
分析 由题意可得函数f(x)是以4为周期的周期函数,做出函数y=f(x)与函数y=ax的图象,由图象可得方程y=-(x-4)2+1=ax 在(3,5)上有2个实数根,解得 0<a<8-2$\sqrt{15}$.再由方程f(x)=ax 在(5,6)内无解可得6a>1.由此求得正实数a的取值范围.
解答
解:由题意可得函数f(x)是以4为周期的周期函数,做出
函数y=f(x)与函数y=ax的图象,
由图象可得方程y=-(x-4)2+1=ax 即 x2+(a-8)x+15=0
在(3,5)上有2个实数根,
由$\left\{\begin{array}{l}{△=(a-8)^{2}-60>0}\\{9+3(a-8)+15>0}\\{25+5(a-8)+15>0}\\{3<\frac{8-a}{2}<5}\end{array}\right.$解得 0<a<8-2$\sqrt{15}$.
再由方程f(x)=ax 在(5,6)内无解可得6a>1,a>$\frac{1}{6}$.
综上可得 $\frac{1}{6}$<a<8-2$\sqrt{15}$,
故选 D.
点评 本题考查了根的存在性及根的个数判断,以及函数与方程的思想,解答关键是运用数形结合的思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | 3 | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |$\overrightarrow{b}$|=2 | B. | |2$\overrightarrow{a}-\overrightarrow{b}$|=2$\sqrt{3}$ | C. | 2$\overrightarrow{a}•\overrightarrow{b}$=-2 | D. | $\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow{b})$=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com