精英家教网 > 高中数学 > 题目详情
14.“Z=$\frac{1}{sinθ+cosθ•i}$-$\frac{1}{2}$(其中i是虚数单位)是纯虚数.”是“θ=$\frac{π}{6}$+2kπ”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

分析 Z=$\frac{1}{sinθ+cosθ•i}$-$\frac{1}{2}$=sinθ$-\frac{1}{2}$-icosθ(其中i是虚数单位)是纯虚数.可得sinθ$-\frac{1}{2}$=0,cosθ≠0,解出θ即可判断出结论.

解答 解:Z=$\frac{1}{sinθ+cosθ•i}$-$\frac{1}{2}$=sinθ$-\frac{1}{2}$-icosθ(其中i是虚数单位)是纯虚数.
则sinθ$-\frac{1}{2}$=0,cosθ≠0,
解得:θ=2kπ+$\frac{π}{6}$或θ=2kπ+π+$\frac{π}{6}$(k∈Z).
∴Z=$\frac{1}{sinθ+cosθ•i}$-$\frac{1}{2}$(其中i是虚数单位)是纯虚数.”是“θ=$\frac{π}{6}$+2kπ”的必要不充分条件.
故选:B.

点评 本题考查了复数的运算法则、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知等差数列{an}为各项均为正数,其前n项和为Sn,若a1=1,$\sqrt{{S}_{3}}$=a2,则a8=(  )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.《九章算术》卷第五《商功》中,有问题“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈;上棱长2丈,无宽,高1丈(如图).
问它的体积是多少?”这个问题的答案是(  )
A.5立方丈B.6立方丈C.7立方丈D.9立方丈

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A={1,2,4},B={y|y=log2x,x∈A},则A∪B=(  )
A.{1,2}B.[1,2]C.{0,1,2,4}D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sinx-x,则不等式f(x+2)+f(1-2x)<0的解集是(  )
A.$(-∞,-\frac{1}{3})$B.$(-\frac{1}{3},+∞)$C.(3,+∞)D.(-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量|$\overrightarrow{a}$|=1,$\overrightarrow{a}•\overrightarrow{b}$=1,则|$\overrightarrow{b}$|min=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)离心率为$\sqrt{3}$,左右焦点分别为F1,F2,P为双曲线右支上一点,∠F1PF2的平分线为l,点F1关于l的对称点为Q,|F2Q|=2,则双曲线方程为(  )
A.$\frac{{x}^{2}}{2}$-y2=1B.x2-$\frac{{y}^{2}}{2}$=1C.x2-$\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{3}$-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给出计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{2018}$的值的一个程序框图如图,其中判断框内应填入的条件是(  )
A.i>1009?B.i<1009?C.i>2018?D.i<2018?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在R上的函数f(x)满足f(x+4)=f(x),f(x)=$\left\{\begin{array}{l}-{x^2}+1,\;\;-1≤x≤1\\-|{x-2}|+1,\;1<x≤3\end{array}$.若关于x的方程f(x)-ax=0有5个不同实根,则正实数a的取值范围是(  )
A.$({\frac{1}{4},\frac{1}{3}})$B.$({\frac{1}{6},\frac{1}{4}})$C.$({16-6\sqrt{7},\frac{1}{6}})$D.$({\frac{1}{6},8-2\sqrt{15}})$

查看答案和解析>>

同步练习册答案