精英家教网 > 高中数学 > 题目详情
19.已知向量|$\overrightarrow{a}$|=1,$\overrightarrow{a}•\overrightarrow{b}$=1,则|$\overrightarrow{b}$|min=1.

分析 运用向量数量积的定义和余弦函数的值域,结合条件,即可得到所求最小值.

解答 解:向量|$\overrightarrow{a}$|=1,$\overrightarrow{a}•\overrightarrow{b}$=1,
可得|$\overrightarrow{a}$|•|$\overrightarrow{b}$|•cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=1,
由|cos<$\overrightarrow{a}$,$\overrightarrow{b}$>|≤1,
可得$\frac{1}{|\overrightarrow{b}|}$=cos<$\overrightarrow{a}$,$\overrightarrow{b}$>≤1,
可得|$\overrightarrow{b}$|≥1,
当$\overrightarrow{a}$,$\overrightarrow{b}$同向时,取得最小值1.
故答案为:1.

点评 本题考查向量模的最小值的求法,注意运用向量数量积的定义和余弦函数的值域,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知双曲线的中心在原点O,左焦点为F1,圆O过点F1,且与双曲线的一个交点为P,若直线PF1的斜率为$\frac{1}{3}$,则双曲线的渐近线方程为(  )
A.y=±xB.y=±$\frac{\sqrt{6}}{3}$xC.y=±$\frac{\sqrt{6}}{4}$xD.y=±$\frac{\sqrt{6}}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知四棱锥S-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,SA=SD=$\sqrt{5},SB=\sqrt{7}$,点E是棱AD的中点,点F在棱SC上,且$\overrightarrow{SF}=λ\overrightarrow{SC}$,SA∥平面BEF.
(Ⅰ)求实数λ的值;
(Ⅱ)求二面角S-BE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某人到甲、乙两市各7个小区调查空置房情况,调查得到的小区空置房的套数绘成了如图的茎叶图,则调查中甲市空置房套数的中位数与乙市空置房套数的中位数之差为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“Z=$\frac{1}{sinθ+cosθ•i}$-$\frac{1}{2}$(其中i是虚数单位)是纯虚数.”是“θ=$\frac{π}{6}$+2kπ”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.曲线C:ρ2-2ρcosθ-8=0  曲线E:$\left\{\begin{array}{l}{x=t+2}\\{y=kt+1}\end{array}\right.$(t是参数)
(1)求曲线C的普通方程,并指出它是什么曲线.
(2)当k变化时指出曲线K是什么曲线以及它恒过的定点并求曲线E截曲线C所得弦长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知非零向量$\overrightarrow m$,$\overrightarrow n$满足|$\overrightarrow m|=2|\overrightarrow n|$,cos<$\overrightarrow m,\overrightarrow n>=\frac{1}{3}$,若$\overrightarrow m⊥(t\overrightarrow n+\overrightarrow m)$,则实数t的值为(  )
A.-6B.$-\frac{2}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线a⊥平面α,则“直线b∥平面α”是“直线a⊥直线b”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在四棱锥P-ABCD中,AD∥BC,AD=AB=DC=$\frac{1}{2}$BC=1,E是PC的中点,面PAC⊥面ABCD.
(Ⅰ)证明:ED∥面PAB;
(Ⅱ)若PB=PC=2,求点P到面ABCD的距离.

查看答案和解析>>

同步练习册答案