精英家教网 > 高中数学 > 题目详情
10.已知四棱锥S-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,SA=SD=$\sqrt{5},SB=\sqrt{7}$,点E是棱AD的中点,点F在棱SC上,且$\overrightarrow{SF}=λ\overrightarrow{SC}$,SA∥平面BEF.
(Ⅰ)求实数λ的值;
(Ⅱ)求二面角S-BE-F的余弦值.

分析 (Ⅰ)连接AC,设AC∩BE=G,证明SA∥FG,通过△GEA~△GBC,求解λ即可.
(Ⅱ)以EA,EB,ES所在直线分别为x轴,y轴,z轴建立空间直角坐标系,求出平面SEB的法向量,平面EFB的法向量,利用空间向量的数量积求解所求二面角的余弦值.

解答 解:(Ⅰ)连接AC,设AC∩BE=G,
则平面SAC∩平面EFB=FG,
∵SA∥平面EFB,∴SA∥FG,∵△GEA~△GBC,
∴$\frac{AG}{GC}=\frac{AE}{BC}=\frac{1}{2}$,∴$\frac{SF}{FC}=\frac{AG}{GC}=\frac{1}{2}⇒SF=\frac{1}{3}SC$,
∴$λ=\frac{1}{3}$;
(Ⅱ)∵$SA=SD=\sqrt{5}$,∴SE⊥AD,SE=2,
又∵AB=AD=2,∠BAD=60°,∴$BE=\sqrt{3}$∴SE2+BE2=SB2,∴SE⊥BE,∴SE⊥平面ABCD,
以EA,EB,ES所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则$A(1,0,0),B(0,\sqrt{3},0),S(0,0,2)$,平面SEB的法向量$\overrightarrow m=\overrightarrow{EA}=(1,0,0)$,
设平面EFB的法向量$\overrightarrow n=(x,y,z)$,
则$\overrightarrow n⊥EB⇒(x,y,z)•(0,\sqrt{3},0)=0⇒y=0$,$\overrightarrow n⊥\overrightarrow{GF}⇒\overrightarrow n⊥\overrightarrow{AS}⇒(x,y,z)•(-1,0,2)=0⇒x=2z$,
令z=1,得$\overrightarrow n=(2,0,1)$,∴$cos<\overrightarrow m,\overrightarrow n>=\frac{\overrightarrow m•\overrightarrow n}{|\overrightarrow m|•|\overrightarrow n|}=\frac{{2\sqrt{5}}}{5}$,
即所求二面角的余弦值是$\frac{{2\sqrt{5}}}{5}$.

点评 本题考查空间向量的数量积的应用,二面角的平面角的求法,直线与平面的位置关系的应用,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在直棱柱ABC-A1B1C1中,AA1=AB=AC=2,AB⊥AC,D,E,F分别是A1B1,CC1,BC的中点. 
(1)求证:AE⊥DF;
(2)求AE与平面DEF所成角的大小及点A到平面DEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}的前项和记为Sn,a1=t,点(an+1,Sn)在直线$y=\frac{1}{2}x-1$上n∈N+
(1)当实数t为何值时,数列{an}是等比数列?并求数列{an}的通项公式;
(2)若f(x)=[x]([x]表示不超过x的最大整数),在(1)的结论下,令${b_n}=f({log_3}{a_n})+1,{c_n}={a_n}+\frac{1}{{{b_n}{b_{n+2}}}}$,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=|x+$\frac{3}{a}$|+|x-2a|.
(1)证明:f(x)≥2$\sqrt{6}$;
(2)若a>0,且f(2)<5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.《九章算术》卷第五《商功》中,有问题“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈;上棱长2丈,无宽,高1丈(如图).
问它的体积是多少?”这个问题的答案是(  )
A.5立方丈B.6立方丈C.7立方丈D.9立方丈

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{\sqrt{2}}{2}$,它过点P(-1,$\frac{\sqrt{2}}{2}$).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若椭圆C上存在两个不同的点A、B关于直线y=-$\frac{1}{m}$x+$\frac{1}{2}$对称,求△OAB的面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A={1,2,4},B={y|y=log2x,x∈A},则A∪B=(  )
A.{1,2}B.[1,2]C.{0,1,2,4}D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量|$\overrightarrow{a}$|=1,$\overrightarrow{a}•\overrightarrow{b}$=1,则|$\overrightarrow{b}$|min=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数$f(x)=\frac{x}{{{e^{sin({x-\frac{π}{2}})}}}}$(e为自然对数的底数),当x∈[-π,π]时,y=f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案