精英家教网 > 高中数学 > 题目详情
1.数列{an}的前项和记为Sn,a1=t,点(an+1,Sn)在直线$y=\frac{1}{2}x-1$上n∈N+
(1)当实数t为何值时,数列{an}是等比数列?并求数列{an}的通项公式;
(2)若f(x)=[x]([x]表示不超过x的最大整数),在(1)的结论下,令${b_n}=f({log_3}{a_n})+1,{c_n}={a_n}+\frac{1}{{{b_n}{b_{n+2}}}}$,求{cn}的前n项和Tn

分析 (1)由题意得Sn=$\frac{1}{2}$an+1-1,根据数列的递推公式即可得到当n≥2时,数列{an}是等比数列,再根据a1,即可求出t的值,
(2)根据f(x)=[x],求出bn=n,再根据等比数列的求和公式和裂项求和即可求出Tn

解答 解:(1)由题意得Sn=$\frac{1}{2}$an+1-1,
∴Sn-1=$\frac{1}{2}$an-1,
两式相减得an=$\frac{1}{2}$an+1-$\frac{1}{2}$an
即an+1=3an
∴当n≥2时,数列{an}是等比数列,
要使n≥1时,数列{an}是等比数列,
则只需要$\frac{{a}_{2}}{{a}_{1}}$=3,
∵a1=$\frac{1}{2}$a2-1,
∴a2=2a1+2,
∴$\frac{2t+2}{t}$=3,
解得t=2,
∴实数t=2时,数列{an}是等比数列,an=2•3n-1
(2)∵bn=f(log3an)+1=[log3(2×3n-1)],
∵3n-1<2×3n-1<3n
∴n-1<log3(2×3n-1)<n,
∴bn=n-1+1=n,
∴cn=an+$\frac{1}{{b}_{n}{b}_{n+2}}$=2×3n-1+$\frac{1}{n(n+2)}$=2×3n-1+$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∵{an}的前n项和为$\frac{2(1-{3}^{n})}{1-3}$=3n-1,
{$\frac{1}{{b}_{n}{b}_{n+2}}$}的前n项和为$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$)=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$
∴Tn=3n-1+$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$═3n-$\frac{2n+3}{2(n+1)(n+2)}$-$\frac{1}{4}$

点评 本题考查了数列和函数的特征以及数列的递推公式和等比数列的求和公式和裂项求和,考查了学生的运算能力和转化能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若${z_1},{z_2}∈C,{z_1}•\overline{z_2}+\overline{z_1}•{z_2}$是(  )
A.纯虚数B.实数C.虚数D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设复数z满足z2=3-4i,则z的模是(  )
A.$\sqrt{5}$B.5C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线的中心在原点O,左焦点为F1,圆O过点F1,且与双曲线的一个交点为P,若直线PF1的斜率为$\frac{1}{3}$,则双曲线的渐近线方程为(  )
A.y=±xB.y=±$\frac{\sqrt{6}}{3}$xC.y=±$\frac{\sqrt{6}}{4}$xD.y=±$\frac{\sqrt{6}}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某公司未来对一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)456789
销量y(件)908483807568
由表中数据,求得线性回归方程为$\hat y=-4x+\hat a$,当产品销量为76件时,产品定价大致为7.5元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.市政府为调查市民对本市某项调控措施的态度,随机抽取了100名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如表所示:
 月收入(单位:百元)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)
 频数 5 203031104
 赞成人数214243073
(1)用样本估计总体的思想比较该市月收入低于20(百元)和不低于30(百元)的类人群在该项措施的态度上有何不同;
(2)现从上班中月收入在[10,20)和[60,70)的市民中各随机抽取一个进行跟踪调查,求抽取的两个人恰好对该措施一个赞成一个不赞成的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x≥2}\\{x+y≥4}\\{2x-y-12≤0}\end{array}\right.$,则目标函数z=3x+y的最小值为(  )
A.-8B.-2C.8D.$\frac{44}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知四棱锥S-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,SA=SD=$\sqrt{5},SB=\sqrt{7}$,点E是棱AD的中点,点F在棱SC上,且$\overrightarrow{SF}=λ\overrightarrow{SC}$,SA∥平面BEF.
(Ⅰ)求实数λ的值;
(Ⅱ)求二面角S-BE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知非零向量$\overrightarrow m$,$\overrightarrow n$满足|$\overrightarrow m|=2|\overrightarrow n|$,cos<$\overrightarrow m,\overrightarrow n>=\frac{1}{3}$,若$\overrightarrow m⊥(t\overrightarrow n+\overrightarrow m)$,则实数t的值为(  )
A.-6B.$-\frac{2}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

同步练习册答案