精英家教网 > 高中数学 > 题目详情
13.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x≥2}\\{x+y≥4}\\{2x-y-12≤0}\end{array}\right.$,则目标函数z=3x+y的最小值为(  )
A.-8B.-2C.8D.$\frac{44}{3}$

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x≥2}\\{x+y≥4}\\{2x-y-12≤0}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x=2}\\{x+y=4}\end{array}\right.$,解得A(2,2),
化目标函数z=3x+y为y=-3x+z,
由图可知,当直线y=-3x+z过点A时,直线在y轴上的截距最小,z有最小值为8.
故选:C.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.过正方体ABCD-A1B1C1D1的顶点A作平面α,使得正方体的各棱与平面α所成的角均相等,则满足条件的平面α的个数是(  )
A.1B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列{an}为各项均为正数,其前n项和为Sn,若a1=1,$\sqrt{{S}_{3}}$=a2,则a8=(  )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}的前项和记为Sn,a1=t,点(an+1,Sn)在直线$y=\frac{1}{2}x-1$上n∈N+
(1)当实数t为何值时,数列{an}是等比数列?并求数列{an}的通项公式;
(2)若f(x)=[x]([x]表示不超过x的最大整数),在(1)的结论下,令${b_n}=f({log_3}{a_n})+1,{c_n}={a_n}+\frac{1}{{{b_n}{b_{n+2}}}}$,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点F(3,0)是双曲线3x2-my2=3m(m>0)的一个焦点,则此双曲线的离心率为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=|x+$\frac{3}{a}$|+|x-2a|.
(1)证明:f(x)≥2$\sqrt{6}$;
(2)若a>0,且f(2)<5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.《九章算术》卷第五《商功》中,有问题“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈;上棱长2丈,无宽,高1丈(如图).
问它的体积是多少?”这个问题的答案是(  )
A.5立方丈B.6立方丈C.7立方丈D.9立方丈

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A={1,2,4},B={y|y=log2x,x∈A},则A∪B=(  )
A.{1,2}B.[1,2]C.{0,1,2,4}D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给出计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{2018}$的值的一个程序框图如图,其中判断框内应填入的条件是(  )
A.i>1009?B.i<1009?C.i>2018?D.i<2018?

查看答案和解析>>

同步练习册答案