精英家教网 > 高中数学 > 题目详情
3.过正方体ABCD-A1B1C1D1的顶点A作平面α,使得正方体的各棱与平面α所成的角均相等,则满足条件的平面α的个数是(  )
A.1B.4C.6D.8

分析 所作平面只须与AA1,AD,AB所成角相等即可.

解答 解:在正方体ABCD-A1B1C1D1中,
与AA1,AD,AB平行的直线各有4条,AA1=AD=AB,A1-BDC1是正三棱锥,
AA1,AD,AB与平面A1DB所成角相等,
∴正方体的12条棱所在的直线所成的角均相等的平面有4个,
故选B

点评 本题考查直线与平面所成角的判断,几何体的特征,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,曲线C由左半椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0,x≤0)和圆N:(x-2)2+y2=5在y轴右侧的部分连接而成,A,B是M与N的公共点,点P,Q(均异于点A,B)分别是M,N上的动点.
(1)若|PQ|的最大值为4+$\sqrt{5}$,求半椭圆M的方程;
(2)若直线PQ过点A,且$\overrightarrow{AQ}$=-2$\overrightarrow{AP}$,$\overrightarrow{BP}$⊥$\overrightarrow{BQ}$,求半椭圆M的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知{an}为等差数列,若a1=6,a3+a5=0,则数列{an}的通项公式为an=8-2n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若${z_1},{z_2}∈C,{z_1}•\overline{z_2}+\overline{z_1}•{z_2}$是(  )
A.纯虚数B.实数C.虚数D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)=2x2+x-k,g(x)=x3-3x,若对任意的x1∈[-1,3],总存在x0∈[-1,3],使得f(x1)≤g(x0)成立,则实数k的取值范围是k≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在递减等差数列{an}中,a1a3=${a}_{2}^{2}$-4,若a1=13,则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和的最大值为(  )
A.$\frac{24}{143}$B.$\frac{1}{143}$C.$\frac{24}{13}$D.$\frac{6}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.甲、乙两家外卖公司,其单个送餐员的日工资方案如下:甲公司底薪70元,每单提成2元;乙公司无底薪,40单以内(含40 单)的部分每单提成4元,超出40 单的部分每单提成6元.假设同一公司的送餐员同一天的送餐单数相同,现从两家公司各抽取一名送餐员,分别记录其100天的送餐单数,得到如下频数分布表:
甲公司被选取送餐员送餐单数频数分布表
送餐单数 3839404142
天数2040201010
乙公司被选取送餐员送餐单数频数分布表
送餐单数 3839404142
天数1020204010
将其频率作为概率,请回答以下问题:
(1)若记乙公司单个送餐员日工资为X元,求X的分布列和数学期望;
(2)小明将要去其中一家公司应聘送餐员,若甲公司承诺根据每位送餐员的表现,每个季度将会增加300元至600元不等的奖金,如果每年按300个工作日计算,请利用所学的统计学知识为他作出选择,去哪一家公司的经济收入可能会多一些?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设复数z满足z2=3-4i,则z的模是(  )
A.$\sqrt{5}$B.5C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x≥2}\\{x+y≥4}\\{2x-y-12≤0}\end{array}\right.$,则目标函数z=3x+y的最小值为(  )
A.-8B.-2C.8D.$\frac{44}{3}$

查看答案和解析>>

同步练习册答案