| A. | $\frac{24}{143}$ | B. | $\frac{1}{143}$ | C. | $\frac{24}{13}$ | D. | $\frac{6}{13}$ |
分析 设公差为d,则d<0,根据题意求出d,得到数列的通项公式,再求出第7项大于0,第8项小于0,再根据裂项求和,即可求出答案.
解答 解:设公差为d,则d<0,
∵a1a3=${a}_{2}^{2}$-4,a1=13,
∴13(13+2d)=(13+d)2-4,
解得d=-2或d=2(舍去),
∴an=a1+(n-1)d=13-2(n-1)=15-2n,
当an=15-2n≥0时,即n≤7.5,
当an+1=13-2n≤0时,即n≥6.5,
∴当n≤7是,an>0
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(15-2n)(13-2n)}$=$\frac{1}{2}$($\frac{1}{2n-15}$-$\frac{1}{2n-13}$)
∴数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为$\frac{1}{2}$($\frac{1}{-13}$-$\frac{1}{-11}$+$\frac{1}{-11}$-$\frac{1}{-9}$+…+$\frac{1}{2n-15}$-$\frac{1}{2n-13}$)=$\frac{1}{2}$(-$\frac{1}{13}$-$\frac{1}{2n-13}$),
当n=6时,最大,最大值为$\frac{1}{2}$(-$\frac{1}{13}$+1)=$\frac{6}{13}$
故选:D
点评 本题考查了等差数列的通项公式的求法和数列与函数的关系和裂项求和,考查了学生的运算能力和转化能力,属于中档题
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com