精英家教网 > 高中数学 > 题目详情
20.如图,在直棱柱ABC-A1B1C1中,AA1=AB=AC=2,AB⊥AC,D,E,F分别是A1B1,CC1,BC的中点. 
(1)求证:AE⊥DF;
(2)求AE与平面DEF所成角的大小及点A到平面DEF的距离.

分析 (1)以A为坐标原点、AB为x轴、AC为y轴、AA1为z轴建立如图的空间直角坐标系.求出相关的坐标,利用向量的数量积为0,证明$\overrightarrow{AE}⊥\overrightarrow{DF}$,推出AE⊥DF. 
(2)求出平面DEF的一个法向量,设AE与平面DEF所成角为θ,利用向量的数量积求解AE与平面DEF所成角,然后求解点A到平面DEF的距离.

解答 解:(1)以A为坐标原点、AB为x轴、AC为y轴、AA1为z轴建立如图的空间直角坐标系.

由题意可知A(0,0,0),D(0,1,2),E(-2,0,1),F(-1,1,0),
故$\overrightarrow{AE}=(-2,0,1),\overrightarrow{DF}=(-1,0,-2)$,…(4分)
由$\overrightarrow{AE}•\overrightarrow{DF}=-2×(-1)+1×(-2)=0$,
可知$\overrightarrow{AE}⊥\overrightarrow{DF}$,即AE⊥DF.  …(6分)
(2)设$\overrightarrow n=(x,y,1)$是平面DEF的一个法向量,
又$\overrightarrow{DF}=(-1,0,-2),\overrightarrow{EF}=(1,1,-1)$,
故由$\left\{{\begin{array}{l}{\overrightarrow n•\overrightarrow{DF}=-x-2=0}\\{\overrightarrow n•\overrightarrow{EF}=x+y-1=0}\end{array}}\right.$解得$\left\{{\begin{array}{l}{x=-2}\\{y=3}\end{array}}\right.$故$\overrightarrow n=(-2,3,1)$.  …(9分)
设AE与平面DEF所成角为θ,则$sinθ=\frac{{|\overrightarrow n•\overrightarrow{AE}|}}{{|\overrightarrow n|•|\overrightarrow{AE}|}}=\frac{5}{{\sqrt{14}•\sqrt{5}}}=\frac{{\sqrt{70}}}{14}$,…(12分)
所以AE与平面DEF所成角为$arcsin\frac{{\sqrt{70}}}{14}$,
点A到平面DEF的距离为$AE•sinθ=\frac{5}{14}\sqrt{14}$. …(14分)

点评 本题考查直线与平面所成角的求法,直线与直线垂直的判定方法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.大学生小王自主创业,在乡下承包了一块耕地种植某种水果,每季投入2万元,根据以往的经验,每季收获的此种水果能全部售完,且水果的市场价格和这块地上的产量具有随机性,互不影响,具体情况如表:
水果产量(kg)30004000
概率0.40.6
水果市场价格(元/kg)1620
概率0.50.5
(Ⅰ)设X表示在这块地种植此水果一季的利润,求X的分布列及期望;
(Ⅱ)在销售收入超过5万元的情况下,利润超过5万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若${z_1},{z_2}∈C,{z_1}•\overline{z_2}+\overline{z_1}•{z_2}$是(  )
A.纯虚数B.实数C.虚数D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在递减等差数列{an}中,a1a3=${a}_{2}^{2}$-4,若a1=13,则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和的最大值为(  )
A.$\frac{24}{143}$B.$\frac{1}{143}$C.$\frac{24}{13}$D.$\frac{6}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.甲、乙两家外卖公司,其单个送餐员的日工资方案如下:甲公司底薪70元,每单提成2元;乙公司无底薪,40单以内(含40 单)的部分每单提成4元,超出40 单的部分每单提成6元.假设同一公司的送餐员同一天的送餐单数相同,现从两家公司各抽取一名送餐员,分别记录其100天的送餐单数,得到如下频数分布表:
甲公司被选取送餐员送餐单数频数分布表
送餐单数 3839404142
天数2040201010
乙公司被选取送餐员送餐单数频数分布表
送餐单数 3839404142
天数1020204010
将其频率作为概率,请回答以下问题:
(1)若记乙公司单个送餐员日工资为X元,求X的分布列和数学期望;
(2)小明将要去其中一家公司应聘送餐员,若甲公司承诺根据每位送餐员的表现,每个季度将会增加300元至600元不等的奖金,如果每年按300个工作日计算,请利用所学的统计学知识为他作出选择,去哪一家公司的经济收入可能会多一些?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知n=${∫}_{0}^{2}$(2x+1)dx,则($\frac{3}{\sqrt{x}}$-$\root{3}{x})^{n}$n的展开式中x2的系数为-18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设复数z满足z2=3-4i,则z的模是(  )
A.$\sqrt{5}$B.5C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线的中心在原点O,左焦点为F1,圆O过点F1,且与双曲线的一个交点为P,若直线PF1的斜率为$\frac{1}{3}$,则双曲线的渐近线方程为(  )
A.y=±xB.y=±$\frac{\sqrt{6}}{3}$xC.y=±$\frac{\sqrt{6}}{4}$xD.y=±$\frac{\sqrt{6}}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知四棱锥S-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,SA=SD=$\sqrt{5},SB=\sqrt{7}$,点E是棱AD的中点,点F在棱SC上,且$\overrightarrow{SF}=λ\overrightarrow{SC}$,SA∥平面BEF.
(Ⅰ)求实数λ的值;
(Ⅱ)求二面角S-BE-F的余弦值.

查看答案和解析>>

同步练习册答案