精英家教网 > 高中数学 > 题目详情
6.市政府为调查市民对本市某项调控措施的态度,随机抽取了100名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如表所示:
 月收入(单位:百元)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)
 频数 5 203031104
 赞成人数214243073
(1)用样本估计总体的思想比较该市月收入低于20(百元)和不低于30(百元)的类人群在该项措施的态度上有何不同;
(2)现从上班中月收入在[10,20)和[60,70)的市民中各随机抽取一个进行跟踪调查,求抽取的两个人恰好对该措施一个赞成一个不赞成的概率.

分析 (1)样本中月收入低于20(百元)的共有5人,其中持赞成态度的共有2人,月收入不低于30(百元)的共有75人,其中持赞成态度的共有64人,由此能求出结果.
(2)将月收入在[10,20)中,不赞成的3人记为a1,a2,a3,赞成的2人记为a4,a5,月收入在[60,70)中不赞成的1人记为b1,赞成的3人记为b2,b3,b4,由此利用列举法能求出从月收入在[10,20)和[60,70)的人中各随机抽取1人,抽取的两个人恰好对该措施一个赞成一个不赞成的概率.

解答 解:(1)由表知,样本中月收入低于20(百元)的共有5人,
其中持赞成态度的共有2人,赞成人数的频率p1=$\frac{2}{5}$,
月收入不低于30(百元)的共有75人,其中持赞成态度的共有64人,
赞成人数的频率p2=$\frac{64}{75}$,
∵$\frac{64}{75}>\frac{2}{5}$,
∴根据样本估计总体思想可知月收入不低于30(百元)的人群
对该措施持肯定态度的比月收入低于20(百元)的人群中持肯定态度的比例要高.
(2)将月收入在[10,20)中,不赞成的3人记为a1,a2,a3
赞成的2人记为a4,a5
月收入在[60,70)中不赞成的1人记为b1,赞成的3人记为b2,b3,b4
从月收入在[10,20)和[60,70)的人中各随机抽取1人,
基本事件总数:n=${C}_{5}^{1}{C}_{4}^{1}$=20,
其中事件A“抽取的两个人恰好对该措施一个赞成一个不赞成”共包含:
(a1,b2),(a1,b3),(a1,b4),(a2,b2),(a2,b3),(a2,b4),(a3,b2),(a3,b3),(a3,b4),(a4,b1),(a5,b1),
共11个,
∴抽取的两个人恰好对该措施一个赞成一个不赞成的概率p=$\frac{11}{20}$.

点评 本题考查古典概型等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知点O是△ABC的内心,∠BAC=30°,BC=1,则△BOC面积的最大值为$\frac{1}{4}$cot52.5°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.阅读程序框图,该算法功能是输出数字A的末两位数字是16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xlnx,g(x)=x+$\frac{1}{ax}$(x>0)都在x=x0处取得最小值.
(1)求f(x0)-g(x0)的值.
(2)设函数h(x)=f(x)-g(x),h(x)的极值点之和落在区间(k,k+1),k∈N,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}的前项和记为Sn,a1=t,点(an+1,Sn)在直线$y=\frac{1}{2}x-1$上n∈N+
(1)当实数t为何值时,数列{an}是等比数列?并求数列{an}的通项公式;
(2)若f(x)=[x]([x]表示不超过x的最大整数),在(1)的结论下,令${b_n}=f({log_3}{a_n})+1,{c_n}={a_n}+\frac{1}{{{b_n}{b_{n+2}}}}$,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知全集为R,集合A={x|x2-2x<3},B={x|x>2},则A∩(∁RB)(  )
A.{x|-1<x<2}B.{x|2<x<3}C.{x|x<3}D.{x|-1<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=|x+$\frac{3}{a}$|+|x-2a|.
(1)证明:f(x)≥2$\sqrt{6}$;
(2)若a>0,且f(2)<5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{\sqrt{2}}{2}$,它过点P(-1,$\frac{\sqrt{2}}{2}$).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若椭圆C上存在两个不同的点A、B关于直线y=-$\frac{1}{m}$x+$\frac{1}{2}$对称,求△OAB的面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知△ABC是边长为$2\sqrt{3}$的正三角形,PQ为△ABC外接圆O的一条直径,M为△ABC边上的动点,则$\overrightarrow{PM}•\overrightarrow{MQ}$的最大值是3.

查看答案和解析>>

同步练习册答案