精英家教网 > 高中数学 > 题目详情
11.已知全集为R,集合A={x|x2-2x<3},B={x|x>2},则A∩(∁RB)(  )
A.{x|-1<x<2}B.{x|2<x<3}C.{x|x<3}D.{x|-1<x≤2}

分析 根据题意,解x2-2x<3可得集合A,由集合B以及补集的定义可得∁RB,进而由交集的定义计算可得答案.

解答 解:根据题意,x2-2x<3⇒x2-2x-3<0⇒-1<x<3,
则A={x|x2-2x<3}={x|-1<x<3},
又由B={x|x>2},全集为R,则∁RB={x|x≤2},
则A∩(∁RB)={x|-1<x≤2};
故选:D.

点评 本题考查集合的交集、并集、补集的混合运算,关键是求出集合A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0),A、B是函数y=f(x)图象上相邻的最高点和最低点,若|AB|=2$\sqrt{2}$,则f(1)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.网络购物已经成为一种时尚,电商们为了提升知名度,加大了在媒体上的广告投入.经统计,近五年某电商在媒体上的广告投入费用x(亿元)与当年度该电商的销售收入y(亿元)的数据如下表:):
年份2012年2013年201420152016
广告投入x0.80.911.11.2
销售收入y1623252630
(Ⅰ)求y关于x的回归方程;
(Ⅱ)2017年度该电商准备投入广告费1.5亿元,利用(Ⅰ)中的回归方程,预测该电商2017年的销售收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n•{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$•$\overline{x}$,选用数据:$\sum_{i=1}^{5}$xiyi=123.1,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=5.1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.抛物线x2=2my(m>0)的焦点为F,其准线与双曲线$\frac{x^2}{m^2}-\frac{y^2}{n^2}=1(n>0)$有两个交点A,B,若∠AFB=120°,则双曲线的离心率为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.市政府为调查市民对本市某项调控措施的态度,随机抽取了100名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如表所示:
 月收入(单位:百元)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)
 频数 5 203031104
 赞成人数214243073
(1)用样本估计总体的思想比较该市月收入低于20(百元)和不低于30(百元)的类人群在该项措施的态度上有何不同;
(2)现从上班中月收入在[10,20)和[60,70)的市民中各随机抽取一个进行跟踪调查,求抽取的两个人恰好对该措施一个赞成一个不赞成的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.甲、乙两名游客来厦门旅游,计划分别从鼓浪屿、曾厝垵、植物园、南普陀四个旅游景点中选取3个景点参观浏览,则两人选取的景点中有且仅有两个景点相同的概率为(  )
A.$\frac{3}{16}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)在R上可导,则“f'(x0)=0”是“f(x0)为函数f(x)的极值”的(  )
A.充分不必要条件B.充要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某商城举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖规则如下:
1.抽奖方案有以下两种,方案a:从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中,方案b:从装有3个红球、2个白球(仅颜色相同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.
2.抽奖条件是,顾客购买商品的金额买100元,可根据方案a抽奖一次:满150元,可根据方案b抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a抽奖两次或方案b抽奖一次或方案a、b各抽奖一次).已知顾客A在该商场购买商品的金额为350元.
(1)若顾客A只选择方案a进行抽奖,求其所获奖金的期望值;
(2)要使所获奖金的期望值最大,顾客A应如何抽奖.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数z满足z•(2+i)=i,i为虚数单位,则|$\overline{z}$|的值为(  )
A.$\frac{\sqrt{5}}{5}$B.$\sqrt{5}$C.1D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

同步练习册答案