精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)在R上可导,则“f'(x0)=0”是“f(x0)为函数f(x)的极值”的(  )
A.充分不必要条件B.充要条件
C.必要不充分条件D.既不充分也不必要条件

分析 利用函数极值点的定义、简易逻辑的判定方法即可得出.

解答 解:由“f'(x0)=0”不可以推出“f(x0)为函数f(x)的极值”,例如取f(x)=x3,f′(0)=3x2|x=0=0,而0不是函数f(x)的极值点.
同时由“f(x0)为函数f(x)的极值”可以推出“f'(x0)=0”,
所以“f'(x0)=0”是“f(x0)为函数f(x)的极值”的必要不充分条件.
故选:C.

点评 本题考查了函数极值点的定义、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(2x2+x)lnx-(2a+1)x2-(a+1)x+b(a,b∈R).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若f(x)≥0恒成立,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xlnx,g(x)=x+$\frac{1}{ax}$(x>0)都在x=x0处取得最小值.
(1)求f(x0)-g(x0)的值.
(2)设函数h(x)=f(x)-g(x),h(x)的极值点之和落在区间(k,k+1),k∈N,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知全集为R,集合A={x|x2-2x<3},B={x|x>2},则A∩(∁RB)(  )
A.{x|-1<x<2}B.{x|2<x<3}C.{x|x<3}D.{x|-1<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=|x+$\frac{3}{a}$|+|x-2a|.
(1)证明:f(x)≥2$\sqrt{6}$;
(2)若a>0,且f(2)<5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2sinx•sin(x+$\frac{π}{3}$).
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)锐角△ABC的角A,B,C所对边分别是a,b,c,角A的平分线交BC于D,直线x=A是函数f(x)图象的一条对称轴,AD=$\sqrt{2}$BD=2,求边a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{\sqrt{2}}{2}$,它过点P(-1,$\frac{\sqrt{2}}{2}$).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若椭圆C上存在两个不同的点A、B关于直线y=-$\frac{1}{m}$x+$\frac{1}{2}$对称,求△OAB的面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.《九章算术》卷第六《均输》中,有问题“今有竹九节,下三节容量四升,上四节容量三升.问中间二节欲均容,各多少?”其中“欲均容”的意思是:使容量变化均匀,即由下往上均匀变细.在这个问题中的中间两节容量和是(  )
A.$1\frac{61}{66}$升B.2升C.$2\frac{3}{22}$升D.3升

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足$\left\{\begin{array}{l}x≥0\\ y≥0\\ \frac{x}{3}+\frac{y}{4}≤1\end{array}\right.$,则$\frac{y+1}{x+1}$的取值范围是(  )
A.$[{-\frac{1}{6},5}]$B.[1,5]C.$[{\frac{1}{4},5}]$D.[0,5]

查看答案和解析>>

同步练习册答案