分析 (Ⅰ)先化简函数,再利用正弦函数的性质,求函数f(x)的单调递增区间;
(Ⅱ)求出$A=\frac{π}{3}$,所以角$∠BAD=\frac{π}{6}$,由正弦定理得$\frac{BD}{sin∠BAD}=\frac{AD}{sinB}⇒sinB=\frac{{\sqrt{2}}}{2}$,所以$B=\frac{π}{4}$,$C=π-\frac{π}{3}-\frac{π}{4}=\frac{5}{12}π$,$∠CDA=π-\frac{π}{6}-\frac{5π}{12}=\frac{5π}{12}$,即可求边a.
解答 解:(Ⅰ)因为$f(x)=2sinx(\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx)=\sqrt{3}sinxcosx+{sin^2}x$=$\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}cos2x+\frac{1}{2}=sin(2x-\frac{π}{6})+\frac{1}{2}$,
令$2kπ-\frac{π}{2}≤2x-\frac{π}{6}≤2kπ+\frac{π}{2},k∈Z$,解得$kπ-\frac{π}{6}≤x≤kπ+\frac{π}{3},k∈z$,
所以递增区间是$[kπ-\frac{π}{6},kπ+\frac{π}{3}](k∈Z)$;
(Ⅱ)直线x=A是函数f(x)图象的一条对称轴,
则$2A-\frac{π}{6}=kπ+\frac{π}{2}⇒A=\frac{kπ}{2}+\frac{π}{3},k∈z$,由$0<A<\frac{π}{2}$得到$A=\frac{π}{3}$,
所以角$∠BAD=\frac{π}{6}$,由正弦定理得$\frac{BD}{sin∠BAD}=\frac{AD}{sinB}⇒sinB=\frac{{\sqrt{2}}}{2}$,
所以$B=\frac{π}{4}$,$C=π-\frac{π}{3}-\frac{π}{4}=\frac{5}{12}π$,$∠CDA=π-\frac{π}{6}-\frac{5π}{12}=\frac{5π}{12}$,
所以AC=AD=2,$DC=2AD•cos\frac{5π}{12}=\sqrt{6}-\sqrt{2}$,
所以$a=BD+AD=\sqrt{6}$.
点评 本题考查三角函数解析式的化简,考查三角函数的性质,考查正弦定理的运用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{16}$ | B. | $\frac{3}{8}$ | C. | $\frac{5}{8}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 充要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a2>b2 | B. | 1>($\frac{1}{2}$)b>($\frac{1}{2}$)a | C. | $\frac{b}{a}$+$\frac{a}{b}$<2 | D. | aeb>bea |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -80 | B. | -16 | C. | 80 | D. | 16 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com