分析 (1)先利用导数求出f(x)的极值点和极值,继而求出a的值,再求出g(x)的极值,问题得以解决,
(2)先求导得到h′(x)=lnx-$\frac{1}{{e}^{2}{x}^{2}}$,再根据函数零点存在定理即可判断零点所在的区间.
解答 解:(1)∵f(x)=xlnx,x>0,
∴f′(x)=1+lnx,
令f′(x)=1+lnx=0,解得x=$\frac{1}{e}$,
当x>$\frac{1}{e}$时,f′(x)>0,函数f(x)单调递增,
当0<x<$\frac{1}{e}$时,f′(x)<0,函数f(x)单调递减,
∴当x=$\frac{1}{e}$,且f($\frac{1}{e}$)=-$\frac{1}{e}$,
∵f(x)=xlnx,g(x)=x+$\frac{1}{ax}$(x>0)都在x=x0处取得最小值,
∴x0=$\frac{1}{e}$,
∵g(x)=x+$\frac{1}{ax}$(x>0),
∴g′(x)=1-$\frac{1}{a{x}^{2}}$,
∴g′($\frac{1}{e}$)=1-$\frac{{e}^{2}}{a}$=0,
解得a=e2,
∴g(x0)=g($\frac{1}{e}$)=$\frac{1}{e}$+$\frac{1}{{e}^{3}}$,
∴f(x0)-g(x0)=-$\frac{1}{e}$+$\frac{1}{e}$+$\frac{1}{{e}^{3}}$=$\frac{1}{{e}^{3}}$,
(Ⅱ)函数h(x)=f(x)-g(x)=xlnx-x-$\frac{1}{{e}^{2}x}$,
∴h′(x)=1+lnx-1+$\frac{1}{{e}^{2}{x}^{2}}$=lnx-$\frac{1}{{e}^{2}{x}^{2}}$,
设φ(x)=lnx-$\frac{1}{{e}^{2}{x}^{2}}$,
∴φ′(x)=$\frac{1}{x}$+$\frac{2}{{e}^{2}{x}^{3}}$>0,
∴h′(x)在(0,+∞)上单调递增,
∴h′(1)•h(e)<0,
∴h′(x)在(1,e)上存在唯一的零点,
∵h(x)的极值点之和落在区间(k,k+1),
∴k=1.
点评 本题考查了导数和函数函数的极值和最值问题,以及函数的零点存在定理,属于中档题
科目:高中数学 来源: 题型:选择题
| A. | $\frac{m+1}{m-1}$ | B. | $\frac{m-1}{m}$ | C. | $\frac{m-1}{m+1}$ | D. | $\frac{m}{m-1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份 | 2012年 | 2013年 | 2014 | 2015 | 2016 |
| 广告投入x | 0.8 | 0.9 | 1 | 1.1 | 1.2 |
| 销售收入y | 16 | 23 | 25 | 26 | 30 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±x | B. | y=±$\frac{\sqrt{6}}{3}$x | C. | y=±$\frac{\sqrt{6}}{4}$x | D. | y=±$\frac{\sqrt{6}}{2}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 月收入(单位:百元) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70) |
| 频数 | 5 | 20 | 30 | 31 | 10 | 4 |
| 赞成人数 | 2 | 14 | 24 | 30 | 7 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 充要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com