精英家教网 > 高中数学 > 题目详情
4.设m=1+2b,n=1+2-b,那么n=(  )
A.$\frac{m+1}{m-1}$B.$\frac{m-1}{m}$C.$\frac{m-1}{m+1}$D.$\frac{m}{m-1}$

分析 推导出n=1+$\frac{1}{{2}^{b}}$,2b=m-1,由此能求出结果.

解答 解:∵m=1+2b,n=1+2-b
∴n=1+$\frac{1}{{2}^{b}}$=1+$\frac{1}{m-1}$=$\frac{m}{m-1}$.
故选:D.

点评 本题考查有理数性质、运算法则,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,圆锥的横截面为等边三角形SAB,O为底面圆圆心,Q为底面圆周上一点.
(Ⅰ)如果BQ的中点为C,OH⊥SC,求证:OH⊥平面SBQ;
(Ⅱ)如果∠AOQ=60°,QB=2$\sqrt{3}$,设二面角A-SB-Q的大小为θ,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,连接..并延长交抛物线C于点Q,若|PF|=$\frac{4}{5}$|PQ|,则|QF|=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a1=1,|an+1-an|=pn,n∈N*.
(1)若p=1,写出a4所有可能的值;
(2)若数列{an}是递增数列,且a1,2a2,3a3成等差数列,求p的值;
(3)若p=$\frac{1}{2}$,且{a2n-1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,圆锥的底面圆心为O,直径为AB,C为半圆弧AB的中点,E为劣弧CB的中点,且AB=2PO=2$\sqrt{2}$.
(1)求异面直线PC与OE所成的角的大小;
(2)求二面角P-AC-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.己知函数f(x)=lnx+x2-3x+2.
(1)求f(x)的单调区间;
(2)证明:对任意n∈N*,都有ln(1+n)>$\sum_{i=1}^{n}\frac{1-1}{{i}^{2}}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点O是△ABC的内心,∠BAC=30°,BC=1,则△BOC面积的最大值为$\frac{1}{4}$cot52.5°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(2x2+x)lnx-(2a+1)x2-(a+1)x+b(a,b∈R).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若f(x)≥0恒成立,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xlnx,g(x)=x+$\frac{1}{ax}$(x>0)都在x=x0处取得最小值.
(1)求f(x0)-g(x0)的值.
(2)设函数h(x)=f(x)-g(x),h(x)的极值点之和落在区间(k,k+1),k∈N,求k的值.

查看答案和解析>>

同步练习册答案