分析 (Ⅰ)由椭圆的离心率为e=$\frac{\sqrt{2}}{2}$,它过点P(-1,$\frac{\sqrt{2}}{2}$),列出方程组,求出a=$\sqrt{2}$,b=1,由此能求出椭圆C的方程.
(Ⅱ)由题意设直线AB的方程为y=mx+n,联立$\left\{\begin{array}{l}{y=mx+n}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得:(1+2m2)x2+4mnx+2n2-2=0,由此利用根的判别式、韦达定理、中点坐标公式、弦长公式,结合已知条件能求出△OAB的面积的最大值.
解答 解:(Ⅰ)∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{\sqrt{2}}{2}$,它过点P(-1,$\frac{\sqrt{2}}{2}$),
∴$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{\frac{1}{{a}^{2}}+\frac{\frac{1}{2}}{{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=$\sqrt{2}$,b=1,
∴椭圆C的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$.
(Ⅱ)由题意设直线AB的方程为y=mx+n,
联立$\left\{\begin{array}{l}{y=mx+n}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,消去y,得:(1+2m2)x2+4mnx+2n2-2=0,
由△=(4mn)2-4(1+2m2)(2n2-2)>0,
得1+2m2>n2,
设A(x1,y1),B(x2,y2),则${x}_{1}+{x}_{2}=-\frac{4mn}{1+2{m}^{2}}$,${x}_{1}{x}_{2}=\frac{2{n}^{2}-1}{1+2{m}^{2}}$,
AB的中点($\frac{-2mn}{1+2{m}^{2}},\frac{n}{1+2{m}^{2}}$)在直线y=-$\frac{1}{m}x+\frac{1}{2}$上,∴n=-$\frac{1+2{m}^{2}}{2}$,
${x}_{1}+{x}_{2}=2m,{x}_{1}{x}_{2}=\frac{2(-\frac{1+2{m}^{2}}{2})^{2}-2}{1+2{m}^{2}}$,
|AB|=$\sqrt{1+{m}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{m}^{2}}$$\sqrt{4{m}^{2}-\frac{2(1+2{m}^{2})^{2}-8}{1+2{m}^{2}}}$,
d=$\frac{|n|}{\sqrt{1+{m}^{2}}}$=$\frac{1+2{m}^{2}}{2\sqrt{1+{m}^{2}}}$,
∴S△OAB=f(t)=$\frac{1}{4}\sqrt{-2{t}^{2}+8t}$,(1<t<4),
∴t=1+2m2=2,
∴m=$±\frac{1}{2}$,△OAB的面积的最大值S=$\frac{\sqrt{2}}{2}$.
点评 本题考查椭圆方程的求法,考查根的判别式、韦达定理、中点坐标公式、弦长公式、椭圆性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 月收入(单位:百元) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70) |
| 频数 | 5 | 20 | 30 | 31 | 10 | 4 |
| 赞成人数 | 2 | 14 | 24 | 30 | 7 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 充要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com