精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0),A、B是函数y=f(x)图象上相邻的最高点和最低点,若|AB|=2$\sqrt{2}$,则f(1)=$\frac{\sqrt{3}}{2}$.

分析 由图象上的两个相邻的最高点和最低点的距离为2$\sqrt{2}$求出ω,可得函数的解析式,即可求出f(1).

解答 解:由题意可得$\sqrt{4+\frac{{π}^{2}}{{ω}^{2}}}$=2$\sqrt{2}$,∴ω=$\frac{π}{2}$,
∴函数f(x)=sin($\frac{π}{2}$x+$\frac{π}{3}$),
∴f(1)=$\frac{\sqrt{3}}{2}$,
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,由图象上的两个相邻的最高点和最低点的距离为2$\sqrt{2}$求出ω是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知sin($\frac{π}{2}$-α)=-$\frac{3}{5}$,0<α<π,则sin2α=-$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a1=1,|an+1-an|=pn,n∈N*.
(1)若p=1,写出a4所有可能的值;
(2)若数列{an}是递增数列,且a1,2a2,3a3成等差数列,求p的值;
(3)若p=$\frac{1}{2}$,且{a2n-1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.己知函数f(x)=lnx+x2-3x+2.
(1)求f(x)的单调区间;
(2)证明:对任意n∈N*,都有ln(1+n)>$\sum_{i=1}^{n}\frac{1-1}{{i}^{2}}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点O是△ABC的内心,∠BAC=30°,BC=1,则△BOC面积的最大值为$\frac{1}{4}$cot52.5°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某小组有男生8人,女生3人,从中随机抽取男生1人,女生2人,则男生甲和女生乙都被抽到的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{8}$C.$\frac{1}{12}$D.$\frac{1}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(2x2+x)lnx-(2a+1)x2-(a+1)x+b(a,b∈R).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若f(x)≥0恒成立,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点P(t,$\frac{1}{2}$)在椭圆C:$\frac{{x}^{2}}{2}$+y2=1内,过P的直线l与椭圆C相交于A,B两点,且点P是线段AB的中点,O为坐标原点.
(Ⅰ)是否存在实数t,使直线l和直线OP的倾斜角互补?若存在,求出t的值,若不存在,试说明理由;
(Ⅱ)求△OAB面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知全集为R,集合A={x|x2-2x<3},B={x|x>2},则A∩(∁RB)(  )
A.{x|-1<x<2}B.{x|2<x<3}C.{x|x<3}D.{x|-1<x≤2}

查看答案和解析>>

同步练习册答案