精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2-(a+2)x+lnx
(1)当a=1时,求函数f(x)的单调区间
(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围;
(3)若对于任意x1,x2∈(0,+∞),x1<x2且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范围.
分析:(1)先求函数的定义域,然后对函数求导,分别令f′(x)>0f′(x)<0可求函数的单调增区间,单调减区间.
(2)利用导数求出f(x)在区间[1,e]上的最小值,建立关于a的关系式.注意进行分类讨论.
(3)设g(x)=f(x)+2x,则g(x)=ax2-ax+lnx,只要g(x)在(0,+∞)上单调递增即可.
解答:解:(1)当a=1时,f(x)=x2-3x+lnx,定义域为(0,+∞)f(x)=2x-3+
1
x
=
(2x-1)(x-1)
x
…(2分)
令f′(x)>0得0<x<
1
2
或x>1
;令f′(x)<0得
1
2
<x<1

所以y=f(x)的增区间为(0,
1
2
)和(1,+∞),减区间为(
1
2
,1)
.…(4分)
(2)函数f(x)=ax2-(a+2)x+lnx的定义域是(0,+∞).…(5分)
当a>0时,f′(x)=2ax-(a+2)+
1
x
=
2ax2-(a+2)x-1
x
(x>0)

令f'(x)=0,即f′(x)=
2ax2-(a+2)x+1
x
=
(2x-1)(ax-1)
x
=0

所以x=
1
2
x=
1
a
…(6分)
①当0<
1
a
≤1
,即a≥1时,f(x)在[1,e]上单调递增,所以f(x)在[1,e]上的最小值是f(1)=-2,符合题意;
②当1<
1
a
<e
时,即
1
e
<a<1
时,f(x)在[1,e]上的最小值是f(
1
a
)<f(1)=-2
,不合题意;
③当
1
a
≥e
时,即0<a≤
1
e
时,f(x)在[1,e]上单调递减,所以f(x)在[1,e]上的最小值是f(e)<f(1)=-2,不合题意.
综上可知,f(x)的取值范围为[1,+∞).…(8分)
(3)设g(x)=f(x)+2x,则g(x)=ax2-ax+lnx,
只要g(x)在(0,+∞)上单调递增即可.…(9分)
g′(x)=2ax-a+
1
x
=
2ax2-ax+1
x

当a=0时,g′(x)=
1
x
>0
,此时g(x)在(0,+∞)上单调递增; …(10分)
当a≠0时,只需g'(x)≥0在(0,+∞)上恒成立,因为x∈(0,+∞),只要2ax2-ax+1≥0,
则需要a>0,…(11分)
对于函数y=2ax2-ax+1,过定点(0,1),对称轴x=
1
4
>0
,只需△=a2-8a≤0,
即0<a≤8.综上0≤a≤8.…(12分)
点评:本题考查导数知识的运用,求函数的单调性,函数的最值,恒成立问题成立的条件..
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案