分析 (I)a1=$\frac{1}{2}$,对任意的n∈N*,都有$\frac{1}{(n+1)a_{n+1}}$=$\frac{na_n+1}{na_n}$成立,可得$\frac{1}{(n+1)a_{n+1}}$-$\frac{1}{n{a}_{n}}$=1.利用等差数列的通项公式即可得出.
(II)an=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.利用“裂项求和”方法可得数列{an}的前n项和Sn,Sn<$\frac{15}{16}$,即1-$\frac{1}{n+1}$<$\frac{15}{16}$,基础即可得出.
解答 解:(I)∵a1=$\frac{1}{2}$,对任意的n∈N*,都有$\frac{1}{(n+1)a_{n+1}}$=$\frac{na_n+1}{na_n}$成立,∴$\frac{1}{(n+1)a_{n+1}}$-$\frac{1}{n{a}_{n}}$=1.
∴$\frac{1}{n{a}_{n}}$=2+(n-1)=n+1,
∴an=$\frac{1}{n(n+1)}$.
(II)an=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴数列{an}的前n项和Sn=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$,
Sn<$\frac{15}{16}$,即1-$\frac{1}{n+1}$<$\frac{15}{16}$,解得n<15,因此满足Sn<$\frac{15}{16}$时n的最大值为14.
点评 本题考查了数列递推关系、等差数列的通项公式、“裂项求和方法”、不等式的解法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{13}}{4}$ | D. | $\frac{\sqrt{39}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,12] | B. | (0,24] | C. | (0,36] | D. | (0,48] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com