精英家教网 > 高中数学 > 题目详情
20.已知a+b=1,a>0,b>0,求$\frac{1}{a}+\frac{1}{b}$的最小值.

分析 根据基本不等式即可求出.

解答 解:∵a+b=1,a>0,b>0,
∴($\frac{1}{a}+\frac{1}{b}$)(a+b)=1+1+$\frac{b}{a}$+$\frac{a}{b}$=2+2$\sqrt{\frac{b}{a}•\frac{a}{b}}$=4,当且仅当a=b=$\frac{1}{2}$取等号,
∴$\frac{1}{a}+\frac{1}{b}$的最小值4.

点评 本题考查基本不等式求最值,变形已知式子并整体代入是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知直角梯形ABCD中,AB∥CD,∠BCD=60°,E是线段AD上靠近A的三等分点,F是线段DC的中点,若AB=2,AD=$\sqrt{3}$,则$\overrightarrow{EB•}$$\overrightarrow{EF}$=$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在数列{an}中,a1=$\frac{1}{2}$,对任意的n∈N*,都有$\frac{1}{(n+1)a_{n+1}}$=$\frac{na_n+1}{na_n}$成立.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn;并求满足Sn<$\frac{15}{16}$时n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知定点A(0,1),直线l1:y=-1交y轴于点B,记过点A且与直线l1相切的圆的圆心为点C.
(1)求动点C的轨迹E的方程;
(2)设倾斜角为α的直线l2过点A,交轨迹E于两点P、Q,交直线l1于点R.若$α∈[{\frac{π}{6},\frac{π}{4}}]$,求|PR|•|QR|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线3x+4y+5=0与圆x2+y2=4交于M,N两点,则$\overrightarrow{OM}•\overrightarrow{ON}$(O为坐标原点)等于(  )
A.1B.0C.-1D.-$\frac{28}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合A=$\left\{{x|\frac{6}{6-x}∈N,x∈N}\right\}$,则集合A的子集的个数是16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知回归直线$\hat y=bx+a$,其中a=4,样本点的中心为(1,6),则回归直线的方程是(  )
A.$\hat y=2x+4$B.$\hat y=x+4$C.$\hat y=-2x+4$D.$\hat y=-x+4$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x∈N|(x+3)(1-x)≤0},B={x|-4<x<4},则A∩B=(  )
A.{x|-3≤x≤1}B.{x|-4<x≤-3}∪{x|1≤x<4}C.{1,2,3}D.{x|-3,-2,-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow{n}$=(2cosx,$\sqrt{3}$sinx),$\overrightarrow{m}$=(cosx,2cosx),设f(x)=$\overrightarrow{n}•\overrightarrow{m}$+a
(1)若a=1,求f(x)的单调区间和最大值、最小值,以及取得最大值和最小值时x的值;
(2)若x∈[0,π]且a=-1时,方程f(x)=b有两个不相等的实数根x1、x2,求b的取值范围及x1+x2的值.

查看答案和解析>>

同步练习册答案