精英家教网 > 高中数学 > 题目详情
已知曲线C1的参数方程为
x=2t-1
y=-4t-2
(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=
2
1-cosθ

(Ⅰ)求证:曲线C2的直角坐标方程为y2-4x-4=0;
(Ⅱ)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.
考点:简单曲线的极坐标方程,参数方程化成普通方程
专题:坐标系和参数方程
分析:(Ⅰ)把ρ=
2
1-cosθ
变形,得到ρ=ρcosθ+2,结合x=ρcosθ,y=ρsinθ得答案;
(Ⅱ)由
x=2t-1
y=-4t-2
消去t得到曲线C1的直角坐标方程为2x+y+4=0,由M1是曲线C1上的点,M2是曲线C2上的点,把|M1M2|的最小值转化为M2到直线2x+y+4=0的距离的最小值.设M2(r2-1,2r),然后由点到直线的距离公式结合基本不等式求解.
解答: (Ⅰ)证明:∵ρ=
2
1-cosθ
,∴ρ-ρcosθ=2,即ρ=ρcosθ+2.
∴ρ2=(x+2)2,即x2+y2=x2+4x+4,
化简得:y2-4x-4=0;
(Ⅱ)解:∵
x=2t-1
y=-4t-2
,消去t得:2x+y+4=0.
∴曲线C1的直角坐标方程为2x+y+4=0.
∵M1是曲线C1上的点,M2是曲线C2上的点,
∴|M1M2|的最小值等于M2到直线2x+y+4=0的距离的最小值.
M2(r2-1,2r),M2到直线2x+y+4=0的距离为d,
d=
2|r2+r+1|
5
=
2[(r+
1
2
)2+
3
4
]
5
3
2
5
=
3
5
10

∴|M1M2|的最小值为
3
5
10
点评:本题考查了简单曲线的极坐标方程,考查了参数方程化普通方程,考查了点到直线的距离公式的应用,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=mx+3,g(x)=x2+2x-m,设G(x)=f(x)-g(x)-1
①若|G(x)|在区间[-1,0]上是减函数,求实数m的取值范围;
②是否存在正整数a,b使得a≤G(x)≤b的解集恰是[a,b]?若存在,求出a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在(a+b)n的展开式中第k项,第k+1项,第k+2项的系数成等差数列,求n和k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3-2x2+x+6,则f(x)在点P(-1,2)处的切线与坐标轴围成的三角形面积等于(  )
A、4
B、5
C、
25
4
D、
13
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某市为调研高三一轮复习质量,在2014年10月份组织了一次摸底考试,并从某校2015届高三理科学生在该次考试的数学成绩进行分析,利用分层抽样抽取90分以上的1200名学生的成绩进行分析,已知该样本的容量为20,分数用茎叶图记录如图所示(部分数据丢失),得到的频率分布表如下:
分数段(分)[90,110)[110,130)[130,150]
频数4
频率   a0.450.2
(Ⅰ)求表中a的值及分数在[120,130)范围内的学生人数;
(Ⅱ)从得分在(130,150]内的学生随机选2名学生的得分,求2名学生的平均分不低于140分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知l经过点P(3,4),它的倾斜角是直线
3
x-y+
3
=0的倾斜角的2倍,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cos2x,
3
),
b
=(1,sin2x),函数f(x)=
a
b

(1)求函数f(x)的最小正周期.
(2)若f(α-
π
3
)=2,α∈[
π
2
,π],求sin(2α+
π
2
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=a分别与曲线y=2(x+1),y=x+lnx交于A、B,则|AB|的最小值为(  )
A、3
B、2
C、
3
2
D、
3
2
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知θ=
5
4
π,
sin[θ+(2k+1)π]-sin[-θ-(2k+1)π]
sin(θ+2kπ)cos(θ-2kπ)
的值是
 

查看答案和解析>>

同步练习册答案