精英家教网 > 高中数学 > 题目详情
5.数列{an}为等差数列,已知a3+2a8+a9=20,则a7=5.

分析 根据等差数列的通项公式,对a3+2a8+a9进行化简即可.

解答 解:等差数列{an}中,∵a3+2a8+a9=20,
∴(a1+2d)+2(a1+7d)+(a1+8d)=4a1+24d
=4(a1+6d)
=4a7=20,
∴a7=5.
故答案为:5.

点评 本题考查了等差数列通项公式的灵活应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.将2枚质地均匀的骰子抛掷一次,记向上的点数分别为a、b,则事件“a+b=5”的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,点A,B是单位圆上的两点,A,B两点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为($\frac{3}{5}$,$\frac{4}{5}$),记∠COA=α.
(Ⅰ)求$\frac{1+sin2α}{1+cos2α}$的值;
(Ⅱ)求cos∠COB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),上顶点为A,左顶点为B,设P是椭圆上的任一点,则△PAB的最大值为$\sqrt{2}$+1,若已知M(-$\sqrt{3}$,0),N($\sqrt{3}$,0),点Q为椭圆上的任意一点,则$\frac{1}{|QN|}+\frac{4}{|QM|}$的最小值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.观察式子:1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,…,则可归纳出式子为(  )
A.1+$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}<\frac{1}{2n-1}$B.1+$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}<\frac{1}{2n+1}$
C.1+$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}<\frac{2n-1}{n}$D.1+$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}<\frac{2n}{2n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列类比推理中,结论正确的个数是(  )
①由a(b+c)=ab+ac类比得到loga(x+y)=logax+logay
②由a(b+c)=ab+ac类比得到sin(x+y)=sinx+siny
③由(ab)n=anbn类比得到(x+y)n=xn+yn
④由(a+b)+c=a+(b+c)类比得到(xy)z=x(yz)
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.学校举办了排球赛,某班45名同学中有12名同学参赛.后来又举办了田径赛,该班有20名同学参赛.已知两项比赛中,该班有19名同学没有参加比赛,那么该班两项都参加的有6名同学.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若二项式(x2-$\frac{2}{x}$)n展开式的第5项是常数项,则展开式的中间项为(  )
A.-160B.-160x3C.20D.160x3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线方程Ax+By=0,若从0,1,2,3,5,6这六个数字中每次取两个不同的数作为系数A、B的值,则方程Ax+By=0所表示的不同直线的条数是18.

查看答案和解析>>

同步练习册答案