| A. | 1+$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}<\frac{1}{2n-1}$ | B. | 1+$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}<\frac{1}{2n+1}$ | ||
| C. | 1+$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}<\frac{2n-1}{n}$ | D. | 1+$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}<\frac{2n}{2n+1}$ |
分析 根据题意,由每个不等式的左边的最后一项的通项公式,以及右边式子的通项公式,可得答案.
解答 解:根据题意,1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,…,
第n个式子的左边应该是,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$,
右边应该是:$\frac{2n-1}{n}$,并且n满足不小于2,
所以第n个式子为:1+$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}<\frac{2n-1}{n}$,n≥2,
故选:C.
点评 本题考查了归纳推理,培养学生分析问题的能力.归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\sqrt{5}$ | C. | $2\sqrt{5}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的最小正周期为2π | B. | 函数f(x)在区间$[0,\frac{π}{2}]$上单调递增 | ||
| C. | 函数f(x)的图象关于y轴对称 | D. | 点(π,0)是函数f(x)的一个对称中心 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {y=sinx} | B. | {x|-1≤x≤1} | C. | {x|x=2π} | D. | R |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com