精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\left\{\begin{array}{l}{sin(\frac{π}{3}x),(-1≤x<0)}\\{f(x-2),(x≥0)}\end{array}\right.$,则f(2013)=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.0

分析 由2013>0,得f(2013)=f(1)=sin$\frac{π}{3}$,由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{sin(\frac{π}{3}x),(-1≤x<0)}\\{f(x-2),(x≥0)}\end{array}\right.$,
∴f(2013)=f(1)=sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知集合$M=\left\{{x|\frac{2}{x}<1}\right\},N=\left\{{y|y=lg({x^2}+1)}\right\}$,则N∩∁RM=[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等差数列{an}中,a1=2,a17=66
(1)求数列{an}的通项公式;
(2)求a2012
(3)2012是否为数列{an}中的项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=$\frac{1}{3}$x3-2x2+3x-m
(1)求f(x)的极值
(2)当m取何值时,函数f(x)有三个不同零点?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个物体的运动方程是s=1-t+t2,其中s的单位是米,t的单位是秒,那么物体在2秒末的瞬时速度是(  )
A.3米/秒B.4米/秒C.5米/秒D.2米/秒

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.图中的三个正方形方块中,着色正方形的个数依次构成一个数列的前3项,这个数列的第5项是(  )
A.2187B.4681C.729D.3125

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)用分析法证明:$\sqrt{5}$+2$\sqrt{2}$<$\sqrt{6}$+$\sqrt{7}$;
(2)已知a>0,b>0,求证:$\frac{{b}^{2}}{a}$+$\frac{{a}^{2}}{b}$≥a+b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式|x-x2-2|>x2-3x-4的解集是(-3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于定义域为D的函数f(x)=k+$\sqrt{x+2}$,满足存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b],求实数k的取值范围$(-\frac{9}{4},-2]$.

查看答案和解析>>

同步练习册答案