精英家教网 > 高中数学 > 题目详情
17.设集合A2n={1,2,3,…,2n}(n∈N*,n≥2).如果对于A2n的每一个含有m(m≥4)个元素的子集P,P中必有4个元素的和等于4n+1,称正整数m为集合A2n的一个“相关数”.
(Ⅰ)当n=3时,判断5和6是否为集合A6的“相关数”,说明理由;
(Ⅱ)若m为集合A2n的“相关数”,证明:m-n-3≥0;
(Ⅲ)给定正整数n.求集合A2n的“相关数”m的最小值.

分析 (Ⅰ)根据相关数的定义判断即可;
(Ⅱ)根据相关数的定义得到m≤n+2时,m一定不是集合A2n的“相关数”,得到m≥n+3,从而证明结论;
(Ⅲ)根据m≥n+3,将集合A2n的元素分成n组,对A2n的任意一个含有n+3个元素的子集p,必有三组${C}_{{i}_{1}}$,${C}_{{i}_{2}}$,${C}_{{i}_{3}}$同属于集合P,不妨设${D}_{{j}_{4}}$与${C}_{{i}_{3}}$无相同元素,此时这4个元素之和为[i1+(2n+1-i1)+(2n-j4)]=4n+1,从而求出m的最小值.

解答 解:(Ⅰ)当n=3时,A6={1,2,3,4,5,6},4n+1=13,
①对于A6的含有5个元素的子集{2,3,4,5,6},
因为2+3+4+5>13,
所以5不是集合A6的“相关数”;
②A6的含有6个元素的子集只有{1,2,3,4,5,6},
因为1+3+4+5=13,
所以6是集合A6的“相关数”.
(Ⅱ)考察集合A2n的含有n+2个元素的子集B={n-1,n,n+1,…,2n},
B中任意4个元素之和一定不小于(n-1)+n+(n+1)+(n+2)=4n+2.
所以n+2一定不是集合A2n的“相关数”;
所以当m≤n+2时,m一定不是集合A2n的“相关数”,
因此若m为集合A2n的“相关数”,必有m≥n+3,
即若m为集合A2n的“相关数”,必有m-n-3≥0;
(Ⅲ)由(Ⅱ)得 m≥n+3,
先将集合A2n的元素分成如下n组:
Ci=(i,2n+1-i),(1≤n),
对A2n的任意一个含有n+3个元素的子集p,
必有三组${C}_{{i}_{1}}$,${C}_{{i}_{2}}$,${C}_{{i}_{3}}$同属于集合P,
再将集合A2n的元素剔除n和2n后,分成如下n-1组:
Dj=(j,2n-j),(1≤j≤n-1),
对于A2n的任意一个含有n+3个元素的子集P,必有一组${D}_{{j}_{4}}$属于集合P,
这一组${D}_{{j}_{4}}$与上述三组${C}_{{i}_{1}}$,${C}_{{i}_{2}}$,${C}_{{i}_{3}}$中至少一组无相同元素,
不妨设${D}_{{j}_{4}}$与${C}_{{i}_{3}}$无相同元素.
此时这4个元素之和为[i1+(2n+1-i1)+(2n-j4)]=4n+1,
所以集合A2n的“相关数”m的最小值为n+3.

点评 本题考查了相关数的定义及其应用,考查新定义的理解,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=ex+m(m为常数),则f(m)=(  )
A.e-1B.1-eC.$1-\frac{1}{e}$D.$\frac{1}{e}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某市房产契税标准如下:
购房总价(万)(0,200](200,400](400,+∞)
税率1%1.5%3%
从该市某高档住宅小区,随机调查了一百户居民,获得了他们的购房总额数据,整理得到了如下的频率分布直方图:

(Ⅰ)假设该小区已经出售了2000套住房,估计该小区有多少套房子的总价在300万以上,说明理由.
(Ⅱ)假设同组中的每个数据用该组区间的右端点值代替,估计该小区购房者缴纳契税的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合A={x|x(x-1)<2},且A∪B=A,则集合B可能是(  )
A.{-1,2}B.{0,1}C.{-1,0}D.{0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=tan(x+\frac{π}{4})$.
(Ⅰ)求f(x)的定义域;
(Ⅱ)设β∈(0,π),且$f(β)=2cos(β-\frac{π}{4})$,求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x∈R|-1<x<1},B={x∈R|x•(x-2)<0},那么A∩B=(  )
A.{x∈R|0<x<1}B.{x∈R|0<x<2}C.{x∈R|-1<x<0}D.{x∈R|-1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设{an}是首项为1,公差为2的等差数列,{bn}是首项为1,公比为q的等比数列.记cn=an+bn,n=1,2,3,….
(1)若{cn}是等差数列,求q的值;
(2)求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不论角α的终边位置如何,在单位圆中作三角函数线时,下列说法正确的是(  )
A.总能分别作出正弦线、余弦线、正切线
B.总能分别作出正弦线、余弦线、正切线,但可能不只一条
C.正弦线、余弦线、正切线都可能不存在
D.正弦线、余弦线总存在,但正切线不一定存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点M是双曲线E的渐近线上的一点,MF1⊥MF2,sin∠MF1F2=$\frac{1}{3}$,则该双曲线的离心率为$\frac{9}{7}$.

查看答案和解析>>

同步练习册答案