| A. | ${x^2}+\frac{1}{x^2}≥x+\frac{1}{x}$ | B. | $\sqrt{x+3}-\sqrt{x+1}≤\sqrt{x+2}-\sqrt{x}$ | C. | $|x-y|+\frac{1}{x-y}≥2$ | D. | |x-y|≤|x-z|+|y-z| |
分析 A.x,y,是互不相等的正数,令t=x+$\frac{1}{x}$≥2,可得:${x}^{2}+\frac{1}{{x}^{2}}$-$(x+\frac{1}{x})$=t2-t-2=(t-2)(t+1)≥0,即可判断出真假;
B.$(\sqrt{x+3}-\sqrt{x+1})$-$(\sqrt{x+2}-\sqrt{x})$=$\frac{2}{\sqrt{x+3}+\sqrt{x+1}}$-$\frac{2}{\sqrt{x+2}+\sqrt{x}}$,即可判断出真假.
C.取x=1,y=2,即可判断出真假;
D.|x-y|=|(x-z)+(z-y)|≤|x-z|+|y-z|,即可判断出真假.
解答 解:A.∵x,y,是互不相等的正数,令t=x+$\frac{1}{x}$≥2,∴${x}^{2}+\frac{1}{{x}^{2}}$-$(x+\frac{1}{x})$=t2-t-2=(t-2)(t+1)≥0,正确;
B.∵$\sqrt{x+3}$-$\sqrt{x+1}$>$\sqrt{x+2}-\sqrt{x}$,∴$(\sqrt{x+3}-\sqrt{x+1})$-$(\sqrt{x+2}-\sqrt{x})$=$\frac{2}{\sqrt{x+3}+\sqrt{x+1}}$-$\frac{2}{\sqrt{x+2}+\sqrt{x}}$≤0,∴$(\sqrt{x+3}-\sqrt{x+1})$≤$(\sqrt{x+2}-\sqrt{x})$,正确.
C.取x=1,y=2,则|x-y|+$\frac{1}{x-y}$=1-1=0<2,因此不正确;
D.|x-y|=|(x-z)+(z-y)|≤|x-z|+|y-z|,正确.
故选:C.
点评 本题考查了基本不等式的性质、分母有理化,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{n}{2n+1}$ | B. | $\frac{2n}{2n+1}$ | C. | $\frac{n}{4n+2}$ | D. | $\frac{2n}{n+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com