精英家教网 > 高中数学 > 题目详情
2.用数学归纳法证明1+2+3+4+…++(2n-1)+2n=2n2+n,当n=k+1时左端应在n=k时的基础上加的项是(  )
A.2k+1B.2k+2C.(2k+1)+(2k+2)D.1

分析 分别写出n=k和n=k+1时对应的式子,比较两式即可得出结论.

解答 解:n=k时,式子左边为1+2+3+4+…++(2k-1)+2k,
当n=k+1时,式子左边为1+2+3+4+…++(2k-1)+2k+(2k+1)+(2k+2),
故增加的项为(2k+1)+(2k+2),
故选C.

点评 本题考查了数学归纳法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.抛物线顶点在原点,焦点在y轴上,其上一点P(m,1)到焦点的距离为5,则抛物线的标准方程为x2=16y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知cosα•tanα<0,那么角α是(  )
A.第一或第二象限角B.第二或第三象限角
C.第三或第四象限角D.第一或第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知两定点A(-3,0)和B(3,0),动点P(x,y)在直线l:y=-x+5上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为(  )
A.$\frac{{3\sqrt{17}}}{17}$B.$\frac{{3\sqrt{2}}}{5}$C.$\frac{{3\sqrt{17}}}{34}$D.$\frac{{2\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,已知点A(0,2),B(-2,0),C(1,0),分别以△ABC的边AB、AC向外作正方形ABEF与ACGH,
(I)求直线FH的一般式方程;
(II)过直线FH上任意一点P作圆x2+y2=1的切线,当切线长最短时求出P点坐标;
(III)过点(6,2)作圆x2+y2=1的两条切线,切点为M,N,求直线MN的一般式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$cos(\frac{3}{2}π+α)={log_8}\frac{1}{4}$,且$α∈(-\frac{π}{2},0)$,求tan(2π-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图边长为2的正方体ABCD-A1B1C1D1中,M、N分别是CC1,B1C1的中点.
(1)证明;A1N∥平面AMD1
(2)求二面角M-AD1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,BC=20,tanB•tanC=$\frac{1}{4}$,AC=4$\sqrt{2}$,则cosA=$-\frac{3\sqrt{34}}{34}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数(1-i)•(1+i)的值是(  )
A.-2iB.2iC.2D.-2

查看答案和解析>>

同步练习册答案