精英家教网 > 高中数学 > 题目详情
2.已知cosα•tanα<0,那么角α是(  )
A.第一或第二象限角B.第二或第三象限角
C.第三或第四象限角D.第一或第四象限角

分析 利用同角三角函数的基本关系式化切为弦得答案.

解答 解:∵tanα•cosα=cosα•$\frac{sinα}{cosα}$=sinα<0且cosα≠0,
∴角α是第三或第四象限角.
故选:C.

点评 本题考查三角函数的象限符号,考查了同角三角函数基本关系式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知等比数列{an}各项均为正数,公比为q,满足an+1<an,a2a8=6,a4+a6=5,则q2=(  )
A.$\frac{5}{3}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果z 1、z 2∈C且z 1$\overline{{z}_{2}}$=$\overline{{z}_{1}}$z 2≠0,则 $\frac{{z}_{1}}{{z}_{2}}$是(  )
A.虚数B.纯虚数C.实数D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数(i-$\frac{1}{i}$)3的虚部是(  )
A.-8B.-8iC.8D.8i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知扇形的圆心角的弧度数为2,其弧长也是2,则该扇形的面积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4.
(Ⅰ)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;
(Ⅱ)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为b,求直线ax+by+1=0与圆x2+y2=$\frac{1}{16}$没有公共点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC中,点A的坐标为(2sinx,cosx),点B的坐标为(sinx,-2$\sqrt{3}$sinx)(x∈R),f(x)=$\overrightarrow{OA}$$•\overrightarrow{OB}$+m+1(O为坐标原点),求y=f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用数学归纳法证明1+2+3+4+…++(2n-1)+2n=2n2+n,当n=k+1时左端应在n=k时的基础上加的项是(  )
A.2k+1B.2k+2C.(2k+1)+(2k+2)D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设Ρ是椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$上的点.若F1、F2是椭圆的两个焦点,则|PF1|+|PF2|=10.

查看答案和解析>>

同步练习册答案