【题目】设,若存在,使得,且对任意,均有(即是一个公差为的等差数列),则称数列是一个长度为的“弱等差数列”.
(1)判断下列数列是否为“弱等差数列”,并说明理由.
①1,3,5,7,9,11;
②2,,,,.
(2)证明:若,则数列为“弱等差数列”.
(3)对任意给定的正整数,若,是否总存在正整数,使得等比数列:是一个长度为的“弱等差数列”?若存在,给出证明;若不存在,请说明理由
【答案】(1)①是,②不是,理由见解析
(2)证明见解析
(3)存在,证明见解析
【解析】
(1)①举出符合条件的具体例子即可;②反证法推出矛盾;
(2)根据题意找出符合条件的为等差数列即可;
(3)首先,根据,将公差表示出来,计算任意相邻两项的差值可以发现不大于.那么用裂项相消的方法表示出,结合相邻两项差值不大于可以得到,接下来,只需证明存在满足条件的即可.用和公差表示出,并展开可以发现多项式的最高次项为,而已知,因此在足够大时显然成立.结论得证.
解:(1)数列①:1,3,5,7,9,11是“弱等差数列”
取分别为1,3,5,7,9,11,13即可;
数列②2,,,,不是“弱等差数列”
否则,若数列②为“弱等差数列”,则存在实数构成等差数列,设公差为,
,
,
又
与矛盾,
所以数列②2,,,,不是“弱等差数列”;
(2)证明:设,
令,取,则,
则,
,
,
就有,命题成立.
故数列为“弱等差数列”;
(3)若存在这样的正整数,使得
成立.
因为,,
则,其中待定.
从而,
又,
∴当时,总成立.
如果取适当的,使得,又有
所以,有
,
为使得,需要,
上式左侧展开为关于的多项式,最高次项为,其次数为,
故,对于任意给定正整数,当充分大时,上述不等式总成立,
即总存在满足条件的正整数,使得等比数列:是一个长度为的“弱等差数列”.
科目:高中数学 来源: 题型:
【题目】设集合,若是的子集,把中的所有数的和称为的“容量”(规定空集的容量为0),若的容量为奇(偶)数,则称为的奇(偶)子集,命题①:的奇子集与偶子集个数相等;命题②:当时,的所有奇子集的容量之和与所有偶子集的容量之和相等,则下列说法正确的是( )
A.命题①和命题②都成立B.命题①和命题②都不成立
C.命题①成立,命题②不成立D.命题①不成立,命题②成立
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的内角A,B,C所对的边分别为a,b,c,bsinA=cosB.
(1)求角B的大小;
(2)若b=2,△ABC的面积为,求a,c.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列对任意满足,下面给出关于数列的四个命题:①可以是等差数列,②可以是等比数列;③可以既是等差又是等比数列;④可以既不是等差又不是等比数列;则上述命题中,正确的个数为( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点、的坐标分别是,,直线,相交于点,且它们的斜率之积为.
(1)求动点的轨迹方程;
(2)若过点的直线交动点的轨迹于、两点, 且为线段,的中点,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(江淮十校2017届高三第一次联考文数试题第7题)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式为:弧田面积=1/2(弦矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,半径等于4米的弧田.按照上述方法计算出弧田的面积约为( )
A. 6平方米 B. 9平方米 C. 12平方米 D. 15平方米
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com